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First-order variance prepagation is nsed to estimate variance of model output originating from varian-
ces of ancerfain initial conditions, parameter values, and external joad estimates for & nutrient-phyto-
plankton-zoopiankion dynamic entrophication modet of one segment of Saginaw Bay, Lake Huron. Co-
efficients of variation of model outpat during summer are not uhlike those estimated from measarements,
The major source of variance is parameter value variances. The most imporiant parameters, in terms of
model sensitivity and variance propagation, are identified by analysis of the predicted correlation matrix.
Methods for reducing model ouiput varisnce are suggested,

INTRODUCTION

Mathematical modeling of aquatic ecosystems has become
& relatively common tool in management contexts. In many
cases, i has also become useful for suggesting research needs,
synthesizing extant information, and analyzing these ecosys-
terns in ways that are not tractabie through Scld and labora-
tory studies alone. The models used most often in these
contexts have similar atéributes; they are generally time-de-
pendent, often noglinear, ordinary differential equation mod-
els based on parameterized physiological processes and mass
conservation,

These models, whether from the management or the re-
search milieu, have another comsmon thread: they are gener-
ally deterministic. That is, although it is often recognized that
model initial conditions, parameters, and forcing functions are
stochastic, this is seidom accounted for. Moving beyvond ac-
knowledgment of vartances of these elements (o assessment of
their effects is important because these stochastic properties

affect the confidence that can be placed in the model outpuy;

that is, confidence is generally inversely related to variance.
Amralysis of this variability is important in a management
context to establish error bounds on predictions. Eutrophica-
tion models have been developed to gemerate deterministic
predictions of water quality based on present and expected
scenarios of system inputs {e.g., DiToro et al, 1971; Chen and
Orlob, 1975; Thomann et al., 1975, 1976, 1979, Canale et al.,
1976; Bierman, 1976). Qutput from these deterministic models
often infuences decisions affecting many thousands of people
socially and economically fe.g., Vallentyne and Thomas, 1978);
vet quantitative limits of confidence are lacking for these
modeis [AMueller, 1986], untike many of their simpier counter-
parts le.g., Chapra and Reckhow, 1979; Reckhow, 1979, Let-
tenmaier and Rickey, 1979, Reckhow and Simpson, 19803 In
particular, only qualitative evaluations of calibration and ver-
ification resuiis have been carried out to date, and experience
with even these tests is limited. Because eutrophication mod-
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els are crude representations of highly variable, stochastic sys-
tems, ignoring such important attributes ofien resulls in naive
confidence or unwarranted disbelief in the models’ solutions.
For these models to become more generally accepted and ef-
fectively used, they must be placed in their proper perspective.
Evaluating the effects of input {forcing function and parame-
ter) variability on model output provides some of the needed
perspective.

Analysis of model variability is alse important in research
contexts where a modef’s ability to simulate must be evaluated
prior to investigation of specific system properties and recog-
nition of actual system variability is important, Models have
recently been used as data synthesizers and as tools for de-
tailed ecclogical systems analysis fe.g., Lehman, 1978; Robert-
son and Scavia, 1979, Secavia, 1979q, b; Halfon, 1979; Scavia
and Benrett, 1986}, Output from these models is oflen used to
assess the relative importance of various system compartments
or processes and thus to focus additional effort on key prob-
lems. Prior to using a model in this context, # is important to
evaluate its ability to function as a synthesizer or interpolator.
Traditiorally, this evaluation is done by comparing model
and measurement tralectories, with no quantitative assess
ment of model or measurement variability, It has been dem-
onstrated that comparison of modeled and measured state
variables alone is not sufficient for this purpose [Scavia,
19805} Calculation of variance associated with model stae
variables and of correlations among state variabies and pa-
rameters will assist in evaluation of these models for use in re-
search contexts.

The need to assess model output variability results in two
problems. The first is the need to estabtish a method by whick
moded output variance can be estimated. The second deals
with estimating that variance and identifying its major
sources. The method used for variance estimation herein,
first-order variance propagation, was compared to Monte
Carlo analysis [Seavia er al., this issue). The comparisons sug-
gested that variance estimates from the two techniques were
simiiar gualitatively; however, differences were attributed to
different interprétation of variance from the two approaches,
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First-order analysis measures variability about the determinis-
tic model trajectory. This is the quantity of interest herein.
The present paper is concerned with the second problem, ie,
(1) applicatior of the above method to estimate variance of
model output based on variable initial conditions, parameters,
and loads and (2) evaluation of the most significant sources of
variability, given those estimates.

Several recent works {e.g., O°Neill, 1973; O 'Neill and Gard-
ner, 1979, Gardner et af, 1980, O’ Neill et al., 19801 explore er-
rors in typical ecological models and submodels. These papers
provide an excellent framework for such analyses and tilus-
trate potential contributions to overall error from various
scurces. Herein we provide an error analysis of a previously
developed eutrophication model applied in a real world situa-
tion,

In the following sections of this paper, frst-order variance
propagation and the Saginaw Bay eutrophication mode} are
described, 2 summary of the variances of input and the result
ing model output are given, and the most significant sources
of that variance are identified.

METHODS
The Model

The system model used herein was developed for predicting
trends of cutrophication in large lakes. Developed originally
for Lake Ontario [Thomann ef al, 1975, 1976], it has been
modified and applied in several other contexts {Canale er al.,
1974; DiToro and Matystik, 1976, 1979, 1980; Richardson and
Bierman, 1976; Thomann et al., 19771 The model is an eight-~
state-variable, nonlinear, time-dependent food chain model
designed to simulate seasonal dynamics in one vertically aver-
aged inner portion of Saginaw Bay, Lake Huron [see Scavia et
al., this issuel. The model simulates dyramics of phytoplank-
ton, herbivorous and carnivorous zoopiankion, three chem-
ical forms of nitrogen, and two chemical forms of phosphorus.
The general interactions among state variables and examples
of nonlinear formulations are ilustrated conceptually by
Scavia et al, {this issue]. Detailed model equations, parameter
vatues, and references to boundary conditions, forcing fune-
tions, and driving data are given by Scavia [1980ai, Bierman et
al, {1980}, and Thomann et al. [1975)]. The model was cali-
brated, by manipulation of parameter vaiues, o the 1974 data
set (Figure 1).

First-Order Variance Propagation

The equation ased for estimation of propagated variance in
the nonlinear, continuous-dynamics case is the following ma-
teix differential equation for covariance [Gelb, 19741

Pu AP +PAT+ Q ()

where (@ is the model equation noise variance-covariance ma-
trix, P is the augmented variance-covariance matrix of state
varizbies and parameters, and

Ay ™ 8g,/9x, 2}

where g, is the model equation for the &h state variable and x,
is the jth state variable or parameter.

In the present analysis the equations were assumed to be
known perfectly; thus Q was set equal to zero {except as noted
below). The approximation A of the nonlinear stale dynamics
is derived from a first-order Taylor series approximation of
the model about the current estimate of the state variables.
Thus the matrix A is evaluated at the current values of X dur-

ing the simulation. In this application the partial derivatives
were caleulated analytically. Because A represents the fime
progression of state variables, it is clear that propagated vari-
ance will be controlied, not only by initial variances and co-
variances of state variables and parameters [P(9)], but also by
the model dynamics [A]. Thus as demonstrated below, vari-
ance ¢an both build and decay in time. A brief discussion of
this method and its reiationship to the present model is given
by Scavia et ar. [this issue). Details concerning the derivation
and a review of previous applications are given by Gelb [1974)
and Scavig [19804], respectively, Fa this procedure, effects of
parameters on state varjables are included by augmenting the
original state variable system with stochastic differential equa-
tions describing the parameters [see Gelb, 1974, sec. 9.4]. Un-
like fisst-order sensitivity analysis, first-order variance propa-
gation includes not only the simuitanecus effects (sensitivity)
of all state variables and concerned parameters on each siate
variable but aiso the propagation of the variances of those pa-
rameters and state variables, Therefore this analysis does not
examine the effects of only one parameter at a time. Also, pa-
rameter irmportance, as well as other error sources, are judged
fingHy in terms of both their sensitivity and uncertainty.

The matrix differential equation for P and the state-vari-
able eguations were sofved by numerical integration with a
paired 5th-6th order Runge-Kutta method [Inmternational
Mathematical and Statistical Libraries, 19771

Input Statistics

Sources of variability whose effects may propagate through
the model can be grouped into four categories: {1) indtial con-
ditions, {2) parameters, (3} inputs or forcing functions, and (4)
maodel eguations. Variability within the fisst and third cate-
gory is often measured and guantified (e.g., mean and vari-
ance). Statistical distributions of parameter values have not
been determined generally. Fowever, recent works have ex-
amined some parameters, and their variability can be defined,
at least in terms of ranges, from the literasure. There has not
been a thorough examination of variability or uncerizinty in-
herent in the moedel equations themselves. Experience with
the models and knowledge of the adequacy of the individual
theories and assumptions upon which they are built will allow
assessment of relative confidence in model equations, at least
qualitatively.

In this particular application the following wers assumed as
sources of variance: (1} 7 of the 22 parameters, (2) all of the 8
initial conditions, (3} all of the 3 nutrient loads, and (4} the
mixing parameter at the boundary between inger and outer
bay segments. It was assumed that the remaining 15 parame-
ters and the model equations were perfect deterministic fusnc-
tions; a rationale for selecting the 7 uncertain parameters is
discussed below. {Actually, some modeb-equation variance is
represented as parameter variance because model squations
were often used to normalize liferatuie vahses that were deter-
mined under diverse conditions.} The varfability associated
with initial conditions, parameters, and loads is a representa-
teon of natural variability and not of errors inherent in mea-
surement, Measurement errors are not included because in
this application they are generally much smaller than natural
variability. For exampie, because of spatial heterogeneity in
the bay, coefficients of variation (CV) for the mean of sam-
pling stations in inner Saginaw Bay were always much larger
than measurement errors. The same was tme for loading esti-
mates, except that in this case the variability was temporal
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Fig. 1. Plots of cight{ state variable trajectories (smooth curve} from Saginew Bay model. Model error estimates are

represented as ki standard deviation bands {shaded) from first-order analysis. Data {circles with errar bars) are repre-
sented as baywide mean plus or minus standard deviation of all samples,

Variability in parameter vajues was due less to errors in mea-
suremnent than jo errors associated with representing a highly
diverse system with relatively simple parameterizations specif-
ically simulating a group of organisms or chemical species by
their typical characteristics. Variance associated with the mix-
ing parameter was not due to measurement error of natural
variability because it was not a measured value but rather a

calibrated parameter. Thus its variance is more a statement of

faith in its calibration. _
Treating input errors as done herein allows estimates of
model variance that correspond to variance of the natural sys-

tem. 1t does not strictly estimate the error associated with the
ability of the mode! to predict. To do this, one certainly st
examine errors introduced by the equations themselves and
perform the analysis over the time frame of the prediction, as
has been done for some empirical and simpier lake models
{e.g., Reckhow, 1979}, However, because variance due to mea-
surement errors is smal compared to natural variability in
this system, these variance estimates measure at least their
contribution to prediction variances,

Variance of initial conditions {February 20, 1974) was esti~
mated by calculating the sampie varance of measursments
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TABLE 1, Statistics sed for State-Variable Initial Conditions
Coefficient
of
Variation,
Variable Mean Variance %
Phytoplankion 00092 mg Chl -t 298 x 0~ 59
Herbivores 0.0075 mg C 1! 20 x 10° 60
Organic N Gldmg N1 18 x W 44
Ammonia 803 mg N1 2.6 x 103 164
Nisrate-
nitrite 075 mg N1 1.0x 19 42
Organic P 0.2 mg P1 40107 G
POy 0.0084 mg P 1 1.44 x 104 143
Carnivores 002 mg ! 30x 1974 34

from all depths at ali stations in the inner bay. For the cases
where the state variables were not measured until a later date,
variance was estimated from coefficients of variation from
other winter sampling dates. Initial-condition means and vari-
ances are shown in Table L

Variance associated with loading estimates was calculated
from time-variable loads multiplied by coefficients of varia-
tiom of stratified (partitioned in time} samples because loading
variability was much higher in the early part of the year. Ex-
ternal loads enter model equations as simple bias terms: X =
gix, t) + LyV, L = load (g m™* day™*), and V' = volume (0.806
x 10'% m*), Therefore loading variance was included afong the
diagonal of the matrix € in (1}. The coefficients of variation of
this bias term for each load and each of the two time strata are
showsn in Table 2.

Variance estimates for the seven parameters (defined in
Table 3} were obtained from several sources. Recently, Canale
et al. [1974), Ford et al. [1978], Zison et al. [1978), and Jorgen-
sen {1979] have published extensive Literature reviews of pa-
rameter vaiues, In addition to these surveys, additional re-
views were conducted and results reported by Scavig [1980a).
Summaries of parameter statistics from sach review and val-
ues used herein are listed in Table 4. We assumed the vari-
ances were not time dependent. These pasticular parameters
were seiected for two reasons. In terms of mode] sensitivity,
experience has demonstrated that these parameters are more
‘importani’ than others. A second criterion was availability of
information from which parameter statistics could be gener-
ated. Including a parameter whose variance had fo be as-
sumed arbitrarily made hitle sense. However, one must be
aware that this implies perfect knowledge (Le., zero variance)
of those parameter values. This is one reason why we used
overestimates of variance for parameters included in the anai-
ysis. These variances are probably overestimates because they
were calculated generally from all available literature values
with liftle regard for differences in experimental conditions, ¥
parameter values were collected only for ‘eutrophic species’ of
phytopiankton, for example, one would expect the variance to
be lower than if it were calculated from a broader spectrum of
species.

In several studies on Saginaw Bay, horizontal mixing has
been examined. DiTore and Marystik {1980} considered mix-
ing at the Saginaw Bay-lLake Huron interface. Bierman and
Dolan {1976}, Bierman {1976}, and Blerman ef al. [1980] con-
sidered mixing between inner and ouler bay segments. Mixing
characteristics and transport have also been examined for 5-
segment [Rickardson and Bierman, 1976}, 16-segment [Rich-
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ardson, 1976}, and 33-segment {Conale and Syuire, 1976] con-
ceptualizations. In each case, mixing parameters were ad-
justed temporally until tracers (temperature, chloride} were
simulated accurately. In the case of a two-segment bay, all
transport is parameterized by the mixing parameter. For three
or more segments, advective transport is specified and the
mixing parameter used to refine tracer simulations, This pro-
cedure atlows one to describe mixing empirically in a well-de-
fined way, and thus uncertainty surrounding the mixing pa-
rameter should be quite Jow, In fact, mixing parameters from
all of the above studies are similar in magnitude. Experience
with calibration of the inner bay model o chloride concentra-
tions indicated that once a calibration was achieved, changes
in the mixing parameter had significant effects only for
changes greater than approximately 10%. Others have had
simifar experience (0. M. DiToro, 0. M. Dolan, perscnal
communications, 1980). Although this is not an accurate esti-
mate of Hs uncertainty, the variance of the mixing parameter
was estiznated from the parameter values and a CV of 10%.

Input variances used herein are generally larger than those
used in similar Monte Carlo comparisons {Scavia er of,, this is-
suel. In that paper, input variances were caleslated 1o corre-
spond to variances of the values sampied from random nwm-
ber generators (given trianguiar distributions). Herein, the
variances are calculated from actual values published in the
literature.

REesvLTs

From the model, input statistics, and variance propagation
technique described above, state-variable variance estimates
were made for an annual simulation based on variances of the
initial conditions and given parameters, Resuiting variances
are represented as model output plus or minus its standard de-
viation in Figure 1 and are normalized as C¥ (standard devia-
tion/state variable value) in Table 5.

Peaks in variance estimates occurred at tirmes when the state
variables were changing fastest. Gardner et al. [19808] found
this properly to be common among several predator-prey
models. Maximum CV (generally in late spring) ranged be-
sween 148 and 772%; however, the average CV during sum-
mer rangdd between 33 and 407%. While these values are
large, they are in many cases comparabie fo the variability
within the bay itself {Table 5, Figure 1). Gardner et al. 119805}
also cbserved that summer is the most predictabie period of

TABLE 2. Statistics for ¥olume Specific State-Variable Loads

Coefficient
of
Variation,
Variable Mean Yariance %
Day 50-F15
Organic N I1x e 23x 18 155
Ammonia 47 x 10 2.6 X 10-7 102
Nitrate-nitrite B2Zx 07 5.8 % 1° 93
Organic P 82 % 107 1.0x 107 122
POy, 1.6 % 104 19 x 192 B7
Day (65365 )
Organic N 46x107% . TEx 0t 60
Amimonia 21 x 104 L1 x 078 CH
Nitrate-niitite 2.7 % 164 3.4 x [9-F 68
Organic P 6.9 x 197 12 R 159
PO, 94 %107 37 % W 65

Units are mg 1! day™".
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TABLE 3. Parameter Values Assumed Uncertain in Saginaw Bay Model

Parameter Vaiue ) Unit Definition

KiC .38 day™! maxkmum phytoplankion specific
growth rate

KMP 3.005 mg Pl Michaelis constant for phosphoras
CGTF 0.06 tmg € day™! °C! herbivorous zoopiankton filter rate
CCHLE 30.0 mg C mg ChI™ carbon 1o chlorophyll ratic
KMPL .62 mgi? Michaelis constant for phytoplankton
K4T G.006 (day “C)? herbivore respiration rate
PCHL 0.6 mg P myg Chl™! Bhosphorus 1o chlorophyll ratio

simujation and suggest, from that perspective, that sampling
during summer is not particularly useful for model validation.
Moore {19731 and Moore ef al. [1976] present excellent strate-
gles for design of water quality sampling programs based on
estimation and subsequent reduction of variances. 1t is of in-
terest then to determine the most significant sources of varia-
bility in this model, From the standpoint of model variance
the relative effects can be demonstrated easily. In the simuola-
tions discussed bejow, initial condition, parameter, load, and
mixing parameter variances were each used singly or in
simple combinations.

Assuming perfect knowledge of initial conditions reduced

maximum output variances only stightly, Conversely, as-
suming unceriain initial conditions and perfect knowledge of
parameter values resulted in much lower errors. Thus parame-
ter variance contributes far more than initial-condition vari-
ance, (See first 3 lines of Table 6.) Variance associated with
loadings contributed little, even when compared to the low
initiai-condition contribution (line 4, Table ). None of the
CVincreased more than 20% when loading variances were in-
claded. In fact, only ammonia-nitrogen (NH:-N) and nitrate-
nitrogen {NO,;-N} OV increased more than a few percent. In-
cluding uncertainty {C¥V = 10%) in the mixing parameter also
had little effect (line 5, Table 6). In fact, even when its as-

TABLE 4. Siatistics for Parameter Valses

Coefficient
of
Variable Mean Variance Yariation Number Source Comment
KiC G.64 G.957 37 26 Canale et af. [1974)
.48 0.65% 48 51 Canale and Vogel {1974] diatom
.43 0.068 43 48 Canale and Vogel [1974] greens
0.24 G026 4 36 Canale and Vogel 1974) flagellates
.45 0,109 48 47 Canale and Vogel [1974] biue-greens
0.46 G079 46 202 Canale and Vogel {1974] all species
.68 (.34 85 Ford et of, [1978}
0.34 0011 29 Ford et al. [1978] -
(.58 0.08 48 used in this study
KMPL G053 G.O673 i63 14 Scavia }1980a] Bosmina, Diapiomus, Daphnia
0.622 1.60065 116 8 Scavia {1980a] Bosmina only
.02 4.00027 82 used in this study
CoT 0.G88 .0063 96 34 Zison er of, {1978} all species, all temperatures
a.08 0.6043 72 i7 DiToro et al, [1971) assurned at 20°C
HEHE (4.0001 64 Hil Werzel [1975] Cladocerans
assumed at 20°C, 0.0%
mg C individual™
0.633 G.0060157 38 4 Werzel [1975] Copepods
asswmed at 20°C, 9.004
mg C individuai!
0.025 G.OGG1 43 13 Wetzel [1975] Diaptomuy gracitis, 6,004
mg C individual™!
(1.56 G002 75 used 1 this study
KAT G012 4% 6 54 33 DiTora et al, {1971} assume Oy C = 275, maximum
species
0013 4 x §o78 52 ] DiToro et ol [1971] asslll};le Oy C == 275, Al
rates only -
0,023 Ix ot B4 il Zivon et al. [1978] maximum rates only
0.6i6 & x 10t 49 48 Zison et af. {1978} alf data
3,006 2x i 5 used i this study
CCHIL 8 6400 HuH 42 Jorgensen [1979]
72 3241 30 2 Canale et al. {1514}
30 1066 105 used i this study
KMP 0.0075 37 x 9% 81 14 Canale et al. {1974}
0.006 4% 107 33 Ford et af. [1978)
0.003 1% 107 31 Ford et al. {1978]
G065 6x 167 4% ased in this stady
PCHL 4.1 i 104 a7 Jorgenser [1979)
23 2. 60 23 Canale ¢t af. [1974]
0.6 4.1 53 used in this study
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TABLE 5 Maximuwm and Mcas of Summer Cocfficients of

Variation (Percent) Caleulated by the First«Order Analysis From

Uncertain Initial Conditions and Parameters Compared to
Coefficienis of Variation From Measured Variables

Summer
Variabie Maximum Mear* Observationst

Phytopiankion 393 78 52
Herbivores T2 206 65
OrganicN - 148 33 48
Ammonia 201 135 92
Nitrate-

nigrite 550 467 40
Organic P 163 48 96
PO, 552 186 115
Carmivores T 266 67

*Summer: Juiy-September,
TCalculated coefficient of variation of spatially averaged values
from all samnpling dates.

sumed variance was doubled, no state-variabie maximum OV
increased more than 1%. These rosults are consistent with
more detailed analyses performed or an ecologically simpler,
two-segment model [Scavia, 19804}

Recall that loading variance represents time variability
ealy. It is well known that estimating loads from highly vari-
able, episodic inputs is difficalt. To examine the potential in-
fluence of these inadeguacies, two more cases were run, 2 and
10 times the load variance, respectively. These runs assume
that joading standard devistions other than temporal are
equai to that due to teriporal variability and equal to 3
times that variability, respectively. Pxlution effects of the in-
ner bay (volume = 10'° m*} somewhat mitigated even this var-
izbility when compared to variance propagated from injtial-
condition and parameter sources (lines 6 and 7, Table 6). The
largest effects were seen in the CV for NH;-N and NO,-N; in-
creasing load variances by a facior of 10, an exireme case, re-
sulted in doubling their model-cutput standard deviations,

These tests of the relative effects of different variance
sources on propagated variances for a l-year simuiation in-
dicated that parameters were by far the most significant con-
tributors. The effects of initial-condition variance were
quickly surpassed by the effects of parameter variance during
the simulation, and only when very large loading measure-
ment ¢erors are assumed do load variances contribute signifi-
cantly, We did not examine results of errors propagated over
losger than the L.year time frame. If we were examining long-
term prediction errors, the effects of uncertain Joad predic-

_tions (not measurements) would have to be considered. This
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would certainly increase the variance contribution of loading
estimates. .

The relative effect of individual parameters was also exam-
ined, In these tests, the estimated covariance matrix, as well as
its changes during the annual simulation, were examined. Re-
¢all that the covariance matrix P included parameter vari-
ances and their estimated covariances with state variables. This
covariance matrix was examined to reveal significan; relation-
ships betwegen parameters and state variables, Differences in
individual variance magmitudes required scaling covariances,
and this was done by calculating the correlation matrix from
the covariances. This procedure scales elements of the covari-
ance mattix to between 0.0 and 1.0, Correlation coefficients
reveal only linear trends; however, as the correlation matrix
chanped character during the annual simulation, the changing
of important parameters reflected time variability of model
dynamics. The procedure is 2 type of sensitivity analysis that
considers all parameter effects simultaneously and employs
both true sensitivity (l.e., dg/3x;) and parameter variance 1o
determine important state variable-parameter pairs, Gardner
et gf [1980q, 1981} caution and demonstrate that sensitivity
analysis withont consideration of parameter variance can pro-
duce misleading information regarding the importance of spe-
cific parameters as contribuiors to model variance.

Typical correlation matrices from two time segments (Tabie
Ty iltustrate the magnitudes and shifts in dominant correla-
tions. For example, on day 141, phytoplankton and available
phosphorus (PO} were highly correlated {p = 0.81), while
phytoplankton and nitrate (NO;} were less correlated (p =
0.42). Later in the vear (day 239) the situation reversed:
phytoplankion-phosphorus correlation (6.3}) was over-
shadowed by phytoplankton-nitrate comrelation (—0.70). This
shift accurately reflects the control of phytoplankton produc-
tton from phosphorus to nitrogen Emitation. The high correla-
tion among most state variables also illustrates their close cou-
pling.

More important in the present context are the correlations
between state varizbles ard parameters. These are jlustrated
in the lower seven rows of the correlation matrix. (The 15 X
£S5 matrix is incomplete in this table because, under the as-
sumptions of the mode}, the parameters are independent; thus
correlation among them is zero.) Again, as ilustrated for the
two dates in Table 7, different parameters were important at
various stages in the simulation. Gardner ef al. [198Ga, b] and
O'Neill et al. [1980] also observed changes in importance of
¢ertain pararmeters with time in nonlinear ecosystem and hy-
drology models, Here, zooplankton grazing (CGT) and the
plankton carbon-to-chlorophyll ratio (CCHL) appeared im-

TABLE 6 Estimated Maximum Coefficients of Variation (Percent) with Different Variance Sources.

Phyio-
¥anance Sources plankton  Herbivores Organic N NH, NO, Organic P PO, Carnivores

Initial condision only 3R 81 24 46 123 22 58 58
Parameters only 592 768 148 196 536 163 548 704
Parameters and initial

conditions 593 ¥ 148 2 530 i63 552 07
{nitiai conditions

and loads 3% 81 28 55 148 2% 60 59
Initial conditions, loads,

and mixing parametsr 38 8¢ Pl 55 51 26 61 60
Enitial conditions, joads

{x2), and mixing parameter 9 82 26 63 172 28 63 61
Initial conditions, loads

(X 10y, and mixing pararneter 41 84 i3 106 pa g | 45 g1 69
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TABLE 7. Correlation Coefficients Among State Variables and Parameters

Day 141

Phyto-

SCAvVIA BT AL SAGINAW Bay MODREL VARIANCE 1§21

1.G
~{) 66

.34

353

-
Lol | -
R BT
NQQIQQ
o
I~
P
o et
— -
QWHQ%Qﬂ
we O ST D T A0
T o9
%o N
~
codnIEE
WMQ‘?O?QQ
[
D €y e 00 1 iy Oh Oy
QNN GG

1.6

{160
.50
G4
0.58

~0.04

L
~3.72
~0.064
~(.72
.70

~0.80

w333

~{).58
0.31
~{.30
038
.24
~.7G

0.34
G775

Lo

G.i4
0.32
(.49

1.0
(.85
~0.27
029
054

1.6

977
.93
.28
G632
0.53

o
0.16
0.1%
G.23
~{.32

Gkt
920

10

6.32
097
.73
6,93
.31
0.31
G54

LG
692 Lo
095 (.88
6.23 (.13
095 683
0.8% 0.79
06.97 050
G632
0.30
G.5G

1.0
—{.96

-{3.82

-0.97
{142
~(.94
~0.81
~(.94
w14
-0.32
(3,56

plankton
Herbivore
Ammonia
Organic P
PO,

Nitrate

Organic N

Camivore

KIC

2.11
G35
250

CaGT

KMPL

—0.064

-{0.028

-8,13
{50

-5.26
6.73
G609

—-0.034

0037
~0.038

6082

094

G.017
40637
=06.0075
3,89

GHE7 0.613
—0.0088
8.17
.57

—0.8035
.17
(.86

G.086
~0.GEY
—0.022
=036

H
0.36
G094
0.24

«0.084 w021 - 22 ~0.25
24 .64 0.63 0.71
0.12 -{.087 0.3 {1038
0.1 4,061 {3,253 —~03.{49

—3.21
.64
—~{.066
G2

=319
0.60

—~{.094

-0,32

—0.24
0.74
—~5.4032
—0.064

o o oy i~
Lacii e ]
i i
el
EESE
bt U 3

portant to most state variables on day 141, whereas later in the
simulation (day 239), correlations with the plankton phos-
phorus-to-chiorophyil ratic (PCHL) domimated in many
cases. ) )

Correlation matrices were examined throughout the period
of simufation and generai tendencies were observed. Figure 2
maps the resuits of these observations as important parame-
ters { | p § > (.5) in time and state-variable space. Some clear
patterns emerge: (1} Early in the simuiation, phytoplankion
growth rate (K 1C) dominated as the most imporiant parame-
ter. (2) During late spring to midsummer, CGT and CCHL
dominated. These two parameters remained most important
for the food chain variables (phytoplankton, herbivores, car-
nivores) throughount the simulation. (3) The phosphorus state
varigbles became correlated most highly with the phosphorus-
wo-chlorophyll ratio (PCHL), and that parameter remained
dominant from midsummer through the end of the simula-
tion, (4) PCHL also became important to the nitrogen state
variabies, but it was replaced by K1C, CGT, and CCHL dur-
ing the last 3 months of the year. (5) Two other parameters
appeared important for only shont periods of time. The zoo-
plankion feeding efficiency parameter (KMPL) influenced the
two orgasic nutrient states, and the herbivorous zooplankton
respiration rate (K4T) influenced the herbivores for a short
time. These interrelationships reflect both correlations be-
tween parameters and state variables and significant variance
contributions from individual parameters.

DISCUSSION

The propagation of varance discussed herein is similar to
the analysis of predictability in meteorology in that it esti-
mates the extent to which stochastic (or uncertain) inputs cor-
rupt the deterministic aspects of model output. A particularky
interesting atiribuze of this entrophication model analysis is
that variances appear bounded; that is, dynamics of the model
equations force both growth and decay of variance, unkike the
meteorological counterparts whose imperfect initial condi-
tions tend to eventually overtake the prediction in time {see
Holton, 1972). Gardner et al. {19804, b] fournd hydrology and
ecclogical model output variances to be bounded. The stabil-
ity of errors in these models is clearly tied to model dynamics
that cause both growth and decay of state variable values and
errors, Gardner et al. [1980h] attribute the bounded error to
environmenta! constraints which, in their case, caused deriva-
tives of state variables to change from positive to negative. In
general, any property of the mode] causing those sige changes
will be effective. In our simulations, interactions among state
variables themseives contribute largely to those dynamics.

The relatively stable variance prediction for these models
may be tied to the assumption of error-free equations. That is,
if model structizre error is included in the analysis, model vari-
ance will alse increase unbounded in time {provided structure
error does not diminish in time). The rate at which those er-
rors grow dependds on the magnitude of equation error, which,
at this time, is largely unknown.

in the above analysis, initial-condition variances (estimated
from measurement sample variance) and parameter variances
(estimated from compilation of literature values) were input
to the variance-propagation eguations, and resultant siate-
variable variances were compared to variances of Saginaw
Bay data. Maximum C¥ for simulated phytopiankton was
593%; the average CV of simulated summer phytoplankion
was 78%, While the maximum CV was quite large, the sum-
mer average CV was not much greater than the annual aver-
age CV of phytoplankion measurements (52%). The average
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Fig. 2. Map of important parameters (defined in Table 3} for
each state variabie as a function of time. Solid squares represent time
of occurrence of maximum coefficient of variation for each state vari-
able. Parameter-state varighle correlations greater than (.8 are noted
with asterisks. Large type represents important parameters during in-
dicatad intervals, Small type represents important parameters only at
the time indicated.

summer model OV for all eight state variables ranged between
33 and 407%, whereas the annual average ¢V of measure-
ments ranged between 490 and 115%, This demonstrated that
after spring, the simulation varlances were generally com-
parabie to data variances. One notable exception is the poorly
simulated carnivorous zooplankton. The general agreement is
especially true if the C¥ for simulated NO,-N (407%) is not
considered; the remaining simulation CV ranged between 33
and 266%. The fact that the CV of measured and simulated
variables are comparable during summer may indicate that
the confidence intervals of both the spatially averaged mea-
sures and the model output each include approximately the
same portion of the theoretical total population of sampies in
the bay. This is true if the model equations are error free and
if the input variance sourcss considered bere are the only im-
poriant sources.

The large CV for the spatially averaged measurements is
due in large part to spatial gradients in the bay; therefore if
one divides the inner bay into subsections, as Richardson and
Bierman {1976} and Canale and Squire {1976} did, the CV of
observations will be smaller. Also, the assumptions of error-
free equations and no other significant variapce sources are
surely not compietely acceptable. For these reasons the rela-
tive contributions of the assumed sources of modei variance
were examined to determine which were most significant, in-
dicating which sources could be used most effectively to re-
duce model output variance. Results demonstrated that pa-
rameter variance far cutweighed that originating from initial
conditions, ivads, and the mixing coefficient. This implies that
the most dramatic reduction in output variance can be ef-
fected through reducing parameter variance.

Parameter variance can be reduced in several ways. One
way is to aggregate modg] state variables in such a way as to
reduce the number of uncertain parameters, In the extreme
this would lead, for example, to the lake-scale, total phos-
phorus, mass-balance formulations exemplified by models re-
viewed by Reckhow [1979]. In these models, parameter vari-
ance is Hmited to uncertainty i the phosphorus apparest
settling velocity. Other variance sources derive from loading
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and hydraulic washout estirnates. This general approach fo-
ward an aggregate representation will produce useful predic-.
tions with relatively low variance. This approach, however, is
not always appropriate, Scavia and Chapra {1977] discuss the
underiying simijarities between simple mass-balance and
more detailed ecosystem approaches and suggest that ifone is
interested in seasonal dynamics of phytoplankion species
compositiop, dynamic availabifity of phosphorus for algal
growth, or in fact, any specific aspect of the ecosystem other
than iakewide averaged total phosphorus concentration, then
a more disaggregated modeling approach is required,

If more detailed ecosystem models are required, there are
other means to reduce parameter variance and subsequently
model output variance. One way is through laboratory and
field programs designed to study biclogical, chemical, and
physical processes associated with the parameters. In this way,
at least parts of the assumed stochastic variability in parame-
ter values could be explained and simulated deterministically,
Thus the remaining parameter uncertainty (or variance)
would be reduced.

Another approach to reducing parameter variance is to
limit the range of true state variables aggregated as a single
model state variable and characterized by assumed constant
parameters. For example, ie the model examined herein, all
phytopiankton are modeled as a single component charactes-
ized by a particular set of parameter values. Because the range
of actual phytoplanikton species being characierized is large,
the variance associated with the parameters is large. If the
phytoplankton were separated into functional groups, param-
eters characterizing each group would have lower variance,
This procedure would obviously lead to more parameters and
thus more varlance sources;, however, whether an increased
number of sources, each with lower variance, will increase or
decrease cutput variance is yet to be shown. Regardless of
how parameter variance is to be reduced, one could not re-
duce the variance of each parameter consistently or simulta-
neously; anyway, it probably is not the most efficient ap-
proach. :

Consequently, a correlation analysis was performed with
the propagated covariance matrix to identify the most sensi-
tive parameters, Each state variabie was sensitive to different
parameters at different times; however, some generaf patierns
were observed. All of the state variables were correlated with
KiC, the phytoplankton maximum growth rate, early in the
year. This was because phytopiankion production was the
dominant process at that time, After this initial time period,
CGT and CCHL, two parameters related to grazing by herbi-
vores, became important because the herbivores responded to
increased concentration of phytopiankton during this time pe-
riod. During the period of relative dynamic equilibrium in
summes, the phosphorus/chlorophy¥! stoichiometric ratio,
PCHL, emerged as the most important parameter for nutrient
state variables. This was most likely because during relatively
stable periods, stoichiometric parameters control partitioning
of nuirients among various components of their cycles. From
this analysis it appeared that state variables and variances as-
soctated with ‘spring bloom’ conditions were controlled most
by variance in K1C and CGT, whereas those associsgted with
summer conditions were controlied most by the stoichiometric
ratios PCHL and CCHL. This suggests that model cutput var-
1ance could be reduced significantly by reducing the variances
associated with these parameters, These reductions could be
accomplished by the approaches discussed above.
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Another approach to reducing variance that can often result
in both fower variance and better mode} structure is through
parameter estimation and model structure identification al-
gorithms such as the Extended Kalman Filter [Kalman, 1966,
Kalman and Bucy, 1961; Gelb, 1974). For example, Koive and
Phillips 11976} and Bowles and Grenney [1978] used this ai.
gorithm o estimate parameter values in stream DO-BOD and
water quality models, Beck [1976] and Beck and Young [1976]
demonstrated use of the alporithm for identifying missing
structure of DO-BOD models of rivers and subsequently re-
ducing outpst variance. The Extended Kalman Filter as weli
as monlinear least squares regression were applied to the
model and data described herein [Scavia, 198041, In our appli-
cation the utility of these approaches was constrained severely
by the small data base relative 10 size of the problem, an oui-
come that should be expected because the algorithms gener-
ally require (1} high-density data, (2} low dimensionality of
the probiem, and (3) accurate models {Moore, 1978].

‘Fise present study focused on comparisons within a subset
of potential variance sources. It is recommended that there be
further investigations {o explore variance caused by the 15 pa-
rameters that Bave been assumed to be known perfectly. Fx-
tension of the present analysis 1o all 22 parameters will be
straightforward operationally. The difficulty will lie in esti-
mating the additional parameter inptt variances. Some couid
be examined relatively easily because the literature is replete
with their measurements (e.2., phyioplankion sinking rate);
however, others may require further experimental study ini-
sally (e.g., carnivore grazing rate). An effort should also be
made to quantify model equation errors independent of pa-
rameter variability, This could best be accomplished by error
analysis and identification of submodels in reiation to the spe-
cific processes they describe. These problems will be more
siractable for algorithms such as the Kalman Filter. Estimated
errors in the submodels could be accumulated in the overall
model easily because most processes are used simply in linear
combinations to describe state variable dynamics.
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