The 2013 Forecast - Given the average Jan-May 2013 total nitrogen load of 162,028 kg/day, this summer’s hypoxia volume forecast is 6.1 km3, slightly smaller than average size for the period of record and almost the same as 2012.

The late July 2013 measured volume was *** km3 (to be published).

Figure 1. Forecasting relationship of TN vs. Hypoxia volume. The solid blue curve is the forecasting result (mean value); dashed blue curves are forecasting confidence intervals (2.5 and 97.5% values), all calibrated as in Evans and Scavia (2010). The open blue circles are observed values for 1985-2009, the closed red circles are observed values before 1985, and the closed blue circles are observed values for 2010 – 2012 (the years used for model calibration). The vertical purple line represents the 2013 Jan-May TN load of 162,028 kg/day and the horizontal lines show the forecast hypoxic volume (mean and confidence intervals) associated with this load.

- The average 2013 forecast is 6.1 km3.
- There is a 95% probability that hypoxic volume will be between 2.0 and 8.5 km3.

Hypoxia in the Chesapeake Bay – The level of oxygen in the waters of the Chesapeake Bay is a critical factor in determining the health of the Bay’s ecosystem.

The nitrogen load, one of the key drivers of hypoxia in the Bay has increased significantly since the 1950s but remains highly variable from year to year. The plot below shows the average Jan-May loads of total nitrogen from the Susquehanna River, the primary source of nitrogen to the main stem of the Bay.
Figure 2. The average Jan – May Susquehanna River TN load (kg/day) corresponding to years in which hypoxic volume measurements were made, the recently measured load for 2013 is in green.

These loads determine the volume of water with oxygen concentrations below 2 mg/l, the definition of hypoxia for the Bay. Hypoxic volume (Figure 3) has increased during this same time period, particularly through the early 1990s. The total volume of the Bay mainstem is about 51 km³; in an average summer (hypoxic volume of 6.3 km³), over 10% of the Bay becomes hypoxic or anoxic.

Figure 3. The observed hypoxic volume (km³) for the period of record, the predicted volume in 2013 is in red.

These two data sets were used to develop and test the model used for hypoxia scenario development and forecasts.
Model track record—The model has been used to produce an annual forecast each year since 2007. In this time the observed hypoxic volume has been within the forecast confidence interval in three of the six years. In the remaining years the model over predicted hypoxic volume substantially in 2007 and slightly during 2008 and under predicted hypoxic volume slightly in 2011.

Figure 4. Model forecast and observed hypoxic volume for the years when spring forecasts have been performed. The model calibration has varied over the years. The years 2007 and 2008 used the original model calibration, 2009 used a recalibration with updated load and hypoxic volume information, starting in 2010 a three year moving window calibration has been used (Evans and Scavia 2010).

The model - The forecast is based on a model that was developed to assess the impacts of changes in nitrogen loads on Chesapeake Bay hypoxia (Scavia et al 2006). While it was originally designed to estimate the extent of nitrogen load reduction needed to reach a particular goal for hypoxia volume, it can also be used to forecast hypoxic volumes for a given year, based on the average January-May nitrogen loads.

The model is an adaptation of a river model that predicts oxygen concentration downstream from point sources of organic matter loads using two mass balance equations for oxygen-consuming organic matter, in oxygen equivalents (i.e., BOD), and dissolved oxygen deficit. The equation for dissolved oxygen (DO), solved at steady state is:

$$DO = DO_s - \frac{k_1 BOD_u (F)}{K * k_2 - k_1} \left(e^{-k_1 \frac{x}{v}} - e^{-k^* k_2 \frac{x}{v}} \right) - D_i e^{-k^* k_2 \frac{x}{v}}$$

where DO = the dissolved oxygen concentration (mg/L), DO_s = the saturation oxygen concentration, k_1 = the BOD decay coefficient (1/day), k_2 = the reaeration coefficient (1/day), BOD_u = the ultimate BOD (mg/L), x = the downstream distance (km), v = stream velocity (km/day), and D_i = the initial DO deficit (mg/L). This approach to modeling
coastal and estuarine hypoxia has also been used successfully for Gulf of Mexico hypoxia (Scavia et al. 2003, 2004).

Recalibration - The model calibration has varied over the years. The years 2007 and 2008 used the original model calibration, 2009 used a recalibration with updated load and hypoxic volume information, starting in 2010 a three year moving window calibration has been used (Evans and Scavia 2010). The original model was calibrated and tested against 1950-2003 nitrogen load and hypoxic volume estimates assembled by Hagy (2002). The Chesapeake Bay Program provided load and hypoxic volume updates for 1986-2008, and even though the new estimates varied little from the original ones (Figure 5); the model was recalibrated for this application to the new 1986-2008 estimates.

![Graphs showing loads and volumes](image)

Current calibration uses the past 3 years of data for TN load and hypoxic volume. The switch to using shorter time-span calibration was made to track shifts over time in the sensitivity of Bay hypoxia to TN load (Evans and Scavia, 2010).

Bayesian Inference – The above hypoxic model was calibrated using Bayesian Inference, an increasingly commonly used method in environmental and ecological modeling (Reckhow 1994; Malve and Qian 2006; Arhonditsis et al. 2007; Stow and Scavia 2009) because it provides a convenient way to combine existing information and past experience with models and current observations for projecting future ecosystem response. The Markov Chain Monte Carlo (MCMC) algorithm has been applied to obtain the numerical summarization of parameters (Qian et al., 2003) in a Bayesian framework.

In the original application, most of the interannual variability was captured by varying only the calibration term, \(v\), and initial deficit, \(D_i\), from year to year. Currently only \(D_i\) is allowed to vary with year, using measured values, and there is no calibration term. We implemented MCMC with Gibbs sampling with WinBUGS (version 1.4.3; Lunn et al., 2000), called from R (version 2.6.0; R2WinBUGS (version 2.1-8; Gelman and Hill 2007). The MCMC sampling was carried out using four chains, each with 5,000 iterations (first 2500 discarded after model convergence); and samples for each unknown quantity was taken from the next 2500 iterations using a thin (MCMC sampling interval) equal to 10 to reduce serial correlation. Statistical inference was based on the resulting 1,000 MCMC samples.
Recent tests (Evans and Scavia 2010) have shown that model forecasting ability is improved by calibrating to short (3-year) recent data-sets. This procedure allows the model to track more recent changes in the Bay’s physics and ecology that affect its sensitivity to hypoxia formation. Thus, this year’s forecast is based on the observed TN loading and hypoxic volume in the last 3 years.

For more information on the role and importance of oxygen in the Chesapeake, see this website from the Chesapeake Bay Program:

http://www.chesapeakebay.net/dissolvedoxygen.aspx?menuitem=14654

For more information on this and other Chesapeake Bay ecosystem forecasts, see their Eco-check website: http://www.eco-check.org/

For more information on the forecasting method and comparisons to other approaches:

Evans and Scavia 2010

Liu and Scavia 2010

Scavia, Kelly, and Hagy 2006

REFERENCES

Environmental Protection Agency (EPA). 1983. 1983 Chesapeake Bay Agreement. US Environmental Protection Agency, Chesapeake Bay Program Office, Annapolis, MD.

Environmental Protection Agency (EPA). 1987. 1987 Chesapeake Bay Agreement. US Environmental Protection Agency, Chesapeake Bay Program Office, Annapolis, MD.

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.