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The 2019 Forecast - Given the average January-May 2019 total 
nitrogen load of 309,403 kg/day, this summer’s hypoxia volume 
forecast is 8.9 km3, the 4th largest in the past 20 years.  

 

  

 
Figure 1. Forecasting relationship of total nitrogen vs. hypoxic volume. The solid blue curve is the response 
curve (mean value) calibrated to observed values for 1985-2017 (open blue circles); dashed blue curves are 
response curve confidence intervals (2.5 and 97.5% values). The vertical purple line represents the 2019 Jan-
May TN load of 309,403 kg/day and the horizontal lines show the forecast hypoxic volume (mean and 
confidence intervals) associated with this load.  
 

Model track record– The model has been used to produce an annual forecast each year since 
2007 (Figure 2).  During this time, the observed hypoxic volume has been within the forecast 
confidence interval in 8 of the 12 years. In the remaining years, the model under-predicted 
hypoxic volume slightly in 2011 and over-predicted it slightly during 2008 and substantially in 
2007 and 2014. In 2014, model over prediction is attributable to the passing of Hurricane Arthur 
in early July and its disruption of the Bay’s stratification and hypoxic layer. Extreme weather 
events such as hurricanes can significantly influence the average extent of hypoxic volume, but 
they are currently not accounted for by the model. 
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The average 2019 
forecast is 8.9 km3. 
 
There is a 95% 
probability that 
hypoxic volume 
will be between 7.5 
and 10.2 km3. 



 
Figure 2.  Model forecast and observed hypoxic volume for the years when spring forecasts have been 
performed.  The model calibration has varied over the years.  The years 2007 and 2008 used the original 
model calibration; 2009 used a recalibration with updated load and hypoxic volume information; in 2010-
2014 a three year moving window calibration was used (Evans and Scavia 2011); 2015 through 2017 used the 
years 1985-2013 to calibrate the model; and in 2018 the model was calibrated using updated USGS load 
estimations WRTDS method for the entire time period of 1985-2017. 
 

Hypoxia in the Chesapeake Bay – The level of oxygen in the waters of the Chesapeake Bay is a 
critical factor in determining the health of the Bay’s ecosystem.   

The nitrogen load, one of the key drivers of hypoxia in the Bay has increased significantly since 
the 1950s but remains highly variable from year to year.  The plot below shows the average Jan-
May loads of total nitrogen from the Susquehanna River, the primary source of nitrogen to the 
main stem of the Bay.  

 
Figure 3. The average Jan-May Susquehanna River TN load (kg/day).  Blue bars represent the period for 
which the model is calibrated; black bars represent years not used for calibration.  

These loads are used to forecast the volume of water with oxygen concentrations below 2 mg/l, 
the definition of hypoxia for the Bay.  Hypoxic volume (Figure 4) has increased during this same 
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time period, particularly through the early 1990s.  The total volume of the Bay mainstem is about 
51 km3; in an average summer (hypoxic volume of 6.3 km3), over 10% of the Bay becomes 
hypoxic or anoxic.  

 
 

 
Figure 4. Observed hypoxic volume (km3) for the period of record.  Blue bars represent the period for which 
the model is calibrated; black bars represent years not used for calibration. The 2019 predicted volume is in 
green.  

These two data sets were used to develop and test the model used for hypoxia scenario 
development and forecasts. 

The model - The forecast is based on a model that was developed to assess the impacts of 
changes in nitrogen loads on Chesapeake Bay hypoxia (Scavia et al. 2006). While it was 
originally designed to estimate the extent of nitrogen load reduction needed to reach a particular 
goal for hypoxia volume, it can also be used to forecast hypoxic volumes for a given year, based 
on the average January-May nitrogen loads.  

The model is an adaptation of a river model that predicts oxygen concentration downstream from 
point sources of organic matter loads using two mass balance equations for oxygen-consuming 
organic matter, in oxygen equivalents (i.e., BOD), and dissolved oxygen deficit. The equation for 
dissolved oxygen (DO), solved at steady state is: 

   

 

where DO = the dissolved oxygen concentration (mg/L), DOs = the saturation oxygen 
concentration, k1 = the BOD decay coefficient (1/day), k2 = the reaeration coefficient (1/day), 
BODu = the ultimate BOD (mg/L), x = the downstream distance (km), v = stream velocity 
(km/day), and Di = the initial DO deficit (mg/L).  This approach to modeling coastal and 
estuarine hypoxia has also been used successfully for Gulf of Mexico hypoxia (Scavia et al. 
2003, 2004).   

Recalibration - The model calibration has varied over the years.  The original model was 
calibrated and tested against 1950-2003 nitrogen load and hypoxic volume estimates assembled 
by Hagy (2002). The years 2007 and 2008 used the original model calibration, while 2009 used a 
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recalibration with updated load and hypoxic volume information. Specifically, the Chesapeake 
Bay Program provided load and hypoxic volume updates for 1986-2008, and even though the 
new estimates varied little from the original ones (Figure 5), the model was recalibrated to the 
new 1986-2008 estimates. In 2010-2014 a three year moving window calibration has been used 
(Evans and Scavia 2011).   

 

Figure 5. Comparison of Hagy (2002) and 
Chesapeake Bay Program (CBP) 
estimates of Loads and Volumes for the 
years 1986 – 2008. 

 

 

This year’s calibration uses TN load and hypoxic volume data for the years 1985-2017.  TN 
loads for the entire period were updated with new estimates based on the Weighted Regressions 
on Time, Discharge, and Season (WRTDS) method from the USGS, though new estimates varied 
little from previous ones.   

 

Bayesian Inference – The above hypoxic model was calibrated using Bayesian Inference, an 
increasingly commonly used method in environmental and ecological modeling (Reckhow 1994; 
Malve and Qian 2006; Arhonditsis et al. 2007; Stow and Scavia 2009) because it provides a 
convenient way to combine existing information and past experience with models and current 
observations for projecting future ecosystem response. The Markov Chain Monte Carlo 
(MCMC) algorithm has been applied to obtain the numerical summarization of parameters (Qian 
et al., 2003) in a Bayesian framework. 

In the original application, most of the interannual variability was captured by varying only the 
calibration term, v, and initial deficit, Di, from year to year.  Currently only Di is allowed to vary 
with year, using measured values, and there is no calibration term.  We implemented MCMC 
with Gibbs sampling with WinBUGS (version 1.4.3; Lunn et al., 2000), called from R (version 
2.6.0; R2WinBUGS (version 2.1-8; Gelman and Hill 2007). The MCMC sampling was carried 
out using four chains, each with 5,000 iterations.  The first 2500 iterations were discarded after 
model convergence and samples for each unknown quantity were taken from the next 2500 
iterations using a thin (MCMC sampling interval) equal to 10 to reduce serial correlation. 
Statistical inference was based on the resulting 1,000 MCMC samples. 
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For more information on the role and importance of oxygen in the Chesapeake, see this 
website from the Chesapeake Bay Program: https://www.chesapeakebay.net/state/dead_zone 

 
For more information on this and other Chesapeake Bay ecosystem forecasts, see their Eco-
check website: https://ian.umces.edu/ecocheck/ 

 
For more information on the forecasting method and comparisons to other approaches:  
Evans and Scavia 2011 

(http://scavia.seas.umich.edu/wp-content/uploads/2010/12/Evans-and-Scavia-2010.pdf) 

Liu and Scavia 2010 

(http://www.scavia.seas.umich.edu/wp-content/uploads/2010/04/Liu-and-Scavia-2010.pdf) 
Scavia, Kelly, and Hagy 2006 

(http://www.scavia.seas.umich.edu/scavia/wp-
content/uploads/2009/11/scavia__kelly__hagy_2006.pdf) 
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