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ABSTRACT

The adverse impacts of harmful algal blooms (HABs) are increasing worldwide. Lake Erie is a North American
Great Lake highly affected by cultural eutrophication and summer cyanobacterial HABs. While phosphorus load-
ing is a known driver of bloom size, more nuanced yet crucial questions remain. For example, it is unclear what
mechanisms are primarily responsible for initiating cyanobacterial dominance and subsequent biomass accumu-
lation. To address these questions, we develop a mechanistic model describing June-October dynamics of chlo-
rophyll @, nitrogen, and phosphorus near the Maumee River outlet, where blooms typically initiate and are
most severe. We calibrate the model to a new, geostatistically-derived dataset of daily water quality spanning
2008-2017. A Bayesian framework enables us to embed prior knowledge on system characteristics and test alter-
native model formulations. Overall, the best model formulation explains 42% of the variability in chlorophyll
a and 83% of nitrogen, and better captures bloom timing than previous models. Our results, supported by cross
validation, show that onset of the major midsummer bloom is associated with about a month of water temper-
atures above 20 °C (occurring 19 July to 6 August), consistent with when cyanobacteria dominance is usually re-
ported. Decreased phytoplankton loss rate is the main factor enabling biomass accumulation, consistent with
reduced zooplankton grazing on cyanobacteria. The model also shows that phosphorus limitation is most severe
in August, and nitrogen limitation tends to occur in early autumn. Our results highlight the role of temperature in
regulating bloom initiation and subsequent loss rates, and suggest that a 2 °C increase could lead to blooms that
start about 10 days earlier and grow 23% more intense.
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1. Introduction

Harmful algal blooms (HABs) refer to the rapid proliferation and ac-
cumulation of toxic or otherwise noxious algae (Anderson et al,, 2012).
Cyanobacteria, also known as cyanophyta or blue-green algae, cause
some of the most common and severe freshwater impairments. In par-
ticular, toxin-forming cyanobacteria genera can lead to poisoning of
fishes, livestock, and humans (Carmichael and Boyer, 2016), affecting
the liver, kidney, and the central nervous system (Carmichael, 2001;
Milutinovic et al., 2003). In addition to these health consequences,
HABs can also have adverse economic impacts (Hoagland et al., 2002;
Steffensen, 2008). The global increase in HABs has been reported since
at least the 1980s (Anderson et al., 2012), and the trend is likely to per-
sist in the next decades (Huisman et al., 2018).

Eutrophication and climate warming appear to be two broad causes
of increasing blooms in aquatic ecosystems (O'Neil et al., 2012). The for-
mer refers to the increase in anthropogenic nutrient inputs that tend to
stimulate growth of algae. While phosphorus (P) appears to be the key
nutrient driver in many freshwater systems (Carpenter, 2008; Schindler
et al,, 2016), nitrogen (N) also plays a role (Gobler et al., 2016; Newell
et al,, 2019). Climate warming also favors HAB development (Carey
et al,, 2012; Chapra et al., 2017; Kosten et al., 2012) through a variety
of potential mechanisms related to bloom initiation and accumulation,
including higher cyanobacteria growth rates (Paerl and Otten, 2013)
and reduced grazing pressure associated with a decrease in zooplankton
body size (Liirling et al., 2013; Moore and Folt, 1993).

The Laurentian Great Lakes are the largest freshwater system in the
world by surface area and toxic blooms occur regularly in different parts
of the system, including portions of lakes Michigan, Huron, Ontario, and
Erie (Carmichael and Boyer, 2016). Lake Erie (LE), the warmest and
most eutrophic Great Lake, has been particularly affected by HABs, espe-
cially in its western basin (Bullerjahn et al., 2016; Michalak et al., 2013;
Jankowiak et al., 2019; Watson et al., 2016) near the Maumee River out-
let (Fig. 1) (Bridgeman et al., 2013). It is generally there that blooms
originate (Bridgeman et al., 2012) and are most intense (Jankowiak
et al,, 2019). Nutrient loading from the Maumee River is widely consid-
ered to be the main driver of LE HABs (Chaffin et al., 2014; Obenour
etal, 2014; Stumpfetal.,, 2012). This area of the lake also has the highest
observed cyanobacteria growth rates (Chaffin et al., 2011) and blooms
there led to a “do not drink” advisory for the Toledo water supply in
2014 (Steffen et al., 2017). Thus, understanding algal dynamics in this
region is essential to water resources management.

Models of different complexity and resolution have been developed
to understand and predict algal blooms in LE (Arhonditsis et al., 2019).
Simple empirical models have generally focused on interannual vari-
ability of maximum HAB size (e.g., biomass). Models of this type helped
determine the importance of springtime P loads from the Maumee River
in driving summertime bloom magnitude (Bertani et al., 2017; Obenour
et al,, 2014; Stumpf et al,, 2012), and inform governments on appropri-
ate nutrient reduction targets (Scavia et al., 2016) as well as impairment
designations (Davis et al., 2019). At the other end of the modeling spec-
trum, complex mechanistic models (typically with hundreds of nodes
and dozens of parameters) have been used to study LE phytoplankton
dynamics in greater detail (Jiang et al.,, 2015; Leon et al., 2011;
Verhamme et al.,, 2016; Zhang et al,, 2008).

The mechanistic model of Verhamme et al. (2016) has been com-
pared against the longest monitoring period (five years of data) and
has also been used to evaluate nutrient loading targets for western LE
(Scavia et al., 2016). However, this state-of-the-art model tends to initi-
ate the midsummer bloom four weeks too early (Verhamme et al.,
2016). This deficiency is linked to a puzzling lag between high late-
spring P concentrations (~early June) and midsummer bloom initiation
(~late July) (Conroy et al., 2014; Newell et al., 2019; Stumpfet al., 2012).
Some field (De Stasio et al,, 2018; Twiss et al., 2014) and modeling stud-
ies (e.g., Jiang et al., 2015) suggest that reduced algal grazing may ex-
plain the blooms, yet other studies point to higher algal growth rates
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(Davis et al., 2012; Gobler et al., 2008; Verhamme et al., 2016). Addi-
tional potential mechanisms include water column stratification and
algal buoyancy, which allow cyanobacteria to outcompete other algal
taxa for light (Paerl and Otten, 2013) although the shallow regions of
western LE are not consistently stratified in summer (Bosse et al., 2019).

Overall, critical questions remain: i) what environmental conditions
drive cyanobacteria dominance and bloom initiation in midsummer? ii)
what mechanisms explain both low chlorophyll in early summer and
rapid algal accumulation following bloom initiation? and iii) how
strongly will algal bloom timing and severity respond to climate
warming? In this study, bloom initiation is defined as the onset of the
main (i.e., largest) midsummer bloom, and as discussed by Anderson
et al. (2012), is associated with a rapid accumulation of algal biomass
(Section 2.3). The goals of this study are to probabilistically test hypoth-
eses about mechanisms of bloom biomass accumulation, and to predict
the timing of bloom initiation based on environmental drivers. We use a
unique set of tools to address these objectives: a new parsimonious yet
process-based model for simulating nutrient and chlorophyll dynamics,
a recently-developed high-resolution (daily) geostatistical calibration
dataset (2008-2017) (Fang et al.,, 2019), and a rigorous Bayesian infer-
ence framework for parameter (e.g., rate) estimation.

2. Materials and methods
2.1. Study area and data

We focus on the area within 20 km of the Maumee River outlet,
which generally suffers the most severe blooms and has been heavily
monitored (Bosse et al., 2019; Chaffin et al., 2014). We refer to this
area (Fig. 1), which has a surface area A = 271 km? and average depth
h = 2.96 m, as the Maumee Proximal Area (MPA), to distinguish it
from the smaller Maumee Bay and the larger western basin of LE.
MPA is an ideal area to focus on the influence of the Maumee River be-
cause it corresponds approximately to the largest area with limited in-
fluence from the Detroit and Raisin River discharges (Bridgeman et al.,
2013; Chaffin et al,, 2011).

Lake concentration data for model calibration include chlorophyll a
(chl), dissolved reactive P (DRP), and dissolved inorganic N (DIN) that
includes nitrate plus nitrite (NOy) and ammonia (NH3). Secchi depth
was used to estimate light attenuation as a function of chl (Section S1).
The data have been synthesized from multiple institutions including
University of Toledo, The Ohio State University, Environment and Cli-
mate Change Canada, US Geological Survey (USGS), and the National
Oceanic and Atmospheric Administration (NOAA) through a
geostatistical method that generates daily time series of average water
column concentrations for the study domain (Fang et al., 2019). Fang
et al. (2019) found that, despite differences among the sampling pro-
grams, they could be reasonably combined using statistical adjustments.
The comparability of water quality data across programs is also sup-
ported by side-by-side methods tests (Golnick et al., 2016). More infor-
mation on these data is provided in the Section S2 and the actual
estimates are displayed in the Results (Section 3.1).

River inputs include observed discharge (Q), and concentrations of
DRP, NOy, NH3, and Total Kjeldahl N (TKN) obtained from Heidelberg
University's National Center for Water Quality Research (NCWQR,
https://ncwqr.org/monitoring/data/), aggregated to daily values. Gaps
in Heidelberg Q data are filled using a regression based on USGS Q
data  (USGS, https://waterdata.usgs.gov/usa/nwis/uv?site_no=
04193500). Gaps in DRP and NOy data were filled using linear interpo-
lation. For DRP, only 5.8% of days were missing between 2008 and
2017, with the length of each missing period being about 3 days. River
chl data were collected by USGS during 2016-2017 and NHs data
were collected on a weekly basis by NCWQR. Both NH3 and chl were im-
puted across all days based on regressions with other river concentra-
tion data from NCWQR (Section S3). As model sensitivity to riverine
chl and NHs is low (see Section 3.5), imputation uncertainty is expected
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Fig. 1. Maumee Proximal Area (red) in western Lake Erie, showing river outlets and Toledo drinking water intake. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

to have a negligible impact. Note that this is the first modeling study of
Lake Erie to directly use NHs data (which averages about 4% of riverine
TKN) as a component of the dissolved inorganic N load, thus taking into
explicit account an important source of highly bioavailable N (Newell
etal, 2019).

Other environmental data include daily water temperature (T [°C])
from NOAA (CoastWatch, https://coastwatch.glerl.noaa.gov/statistic/
statistic.html), solar insolation on a horizontal surface (I [MJ m—2
d™']) from NASA (POWER, https://power.larc.nasa.gov/), solar eleva-
tion above the horizon 3 [rad] and photoperiod f (fraction of day from
sunrise to sunset) from the suncalc package (Thieurmel and
Elmarhraoui, 2019), lake water level from NOAA (https://
tidesandcurrents.noaa.gov/stationhome.html?id=9063085), and wind
speed from NOAA (NDBC, https://www.ndbc.noaa.gov) processed as
in Fang et al. (2019).

2.2. Baseline mechanistic model (M)

The data described above were used to update (i.e., calibrate) mech-
anistic model parameters through Bayesian inference (e.g., Sikorska
etal., 2015; Villez et al,, 2020). The model was developed in stages, con-
sistent with previous eutrophication studies testing mechanisms poten-
tially relevant to improving system representation (Katin et al., 2019;
Sadeghian et al,, 2018) and with the concept of “gradual incorporation
of complexity” recommended by Shimoda and Arhonditsis (2016).
This section describes the baseline mechanistic model (M) while
Section 2.3 describes candidate model enhancements.

Model My represents daily dynamics of chl, DRP, DIN, and nonalgal
biomass (Z). DIN was included because there is evidence of N limitation
in the MPA at the end of summer in some years (Chaffin et al., 2014,

2013, 2011), indicating it plays a relevant role in LE phytoplankton dy-
namics (Newell et al., 2019; Salk et al., 2018). The model represents the
MPA as a continuously stirred tank reactor with flow regulated by the
Maumee River discharge. Nutrient loads from the river mix into the
lake and are incorporated into chl, a common surrogate for algal bio-
mass (Chapra, 2008; Arhonditsis et al., 2019; Fang et al., 2019). Algae
die because of grazing and other causes and their biomass gets incorpo-
rated into suspended zooplankton and organic detritus (Z). Finally, Z
(represented in units of N equivalents) decomposes and releases the
nutrients stoichiometrically back into the water. In the baseline model
version (Mp), differential equations for chl (a), DRP (p), DIN (n) and Z
(z) are:

da Qriv

4 = @) "+ b pn1.066" P k,a—kia (1)

d i _ 0.0

dit’ = (py—D) % —Tpa dn1.066"2°kya + Ky 1.08" ZOZTI;Z
+B1.08"T 2)

dn Qriv T—20 T—20

i (nyyy—n) Vv —TnappPn1.066" " kea + kin1.08" " z—kyn 3)

%‘i — (zi—2) % 4 Trakia— %z—kmzl 08720 )

where k; [d '] is the loss rate of phytoplankton representing grazing
and other causes of mortality such as viral lysis, k; [d "] is the maximum
algal growth rate, ¢; is light limitation, ¢y is nutrient limitation, vs [m
d~'] is the settling velocity of Z, B [ug 1! d '] represents the internal
DRP load from the bottom sediments, r,, [pg pg~'] is the algal
phosphorus-to-chlorophyll ratio, r,,, [ug ug~ '] is the algal nitrogen-to-
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chlorophyll ratio, k,, [d~"] is the rate of mineralization of Z, and k4 [d™}]
is the rate of denitrification and related N dissimilatory processes (Salk
etal., 2018).In Eq. (4), z4, is the portion of TKN which is not NH5 nor al-
gal biomass (a,, 'ng). Temperature adjustments for growth, mineraliza-
tion, and sediment loading are based on typical Arrhenius formulations
(Chapra, 2008). V represents the domain volume which is calculated as
V = Ah, taking into account fluctuations in lake depth (h). Nutrient lim-
itation, ¢y, is represented using a Monod formulation and Liebig's Law
of the Minimum (Sadeghian et al,, 2018):

- . p n
oy = mm<s—p —p'S.+n +n) (5)

where S, and S,, are the half-saturation concentrations [ug 1] for DRP
and DIN, respectively.

Light limitation, ¢y, is estimated based on the formulation proposed
by Steele (1965) integrated over the water column using the Beer-
Lambert Law for light attenuation (Chapra, 2008):

¢ = Izcjl{ ( exp(—% exp(—keha)) — exp(— %)) (6)

where I, is the daily average photosynthetically available light, about
45% of the incoming radiation (Britton and Dodd, 1976; Chapra,
2008), and I, is the optimal photosynthetically available light intensity
set to 7.2 [M] m—2 d~'] based on preliminary analysis of chl versus I
and consistent with typical values (Chapra, 2008). Finally, k. [m™'] is
the light attenuation coefficient, which is a function of chl (Section S1).

2.3. Enhancing the model to explicitly consider blooms

We test multiple model enhancements designed to improve the rep-
resentation of water quality dynamics relative to the baseline model Mgy
(Fig. 2). Specifically, we test three models that allow parameters to vary
before and after bloom initiation: M, allows for a variable loss rate (k;),
Mg allows for a variable maximum growth rate (kg), and Mg allows
for both the growth and loss rates to vary. These rate parameters are es-
timated both before (k,, k;) and after (kgp, ki) bloom initiation using
data-driven Bayesian inference (Section 2.4). By comparing which
model enhancements lead to greater fidelity between observed and
predicted water quality conditions, we are able to assess which pro-
cesses are most critical to bloom initiation and accumulation.
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Here, bloom initiation is defined as the beginning of rapid bio-
mass accumulation associated with the main (i.e., largest) midsum-
mer MPA bloom event for each year. Due to the noisiness of
phytoplankton data, exact bloom initiation dates are difficult to de-
fine, and we thus initially employ a nominal initiation date of 24
July, consistent with large-scale studies showing bloom formation
typically begins in late July (Fang et al., 2019; Stumpf et al., 2012,
2016). Importantly, late July is also the period during which
cyanobacteria typically become dominant based on in situ measure-
ments (Bosse et al., 2019; Bridgeman et al., 2012) and remote sens-
ing (Stumpf et al,, 2012, 2016). Note that there is a strong
correlation between geostatistical (chl-based) estimates and remote
sensing estimates of maximum cyanobacterial bloom size (Fang
et al.,, 2019). For these reasons, bloom initiation is approximately
synonymous with a shift to cyanobacteria dominance.

After determining which model (M;, Mg, or M;¢) best explains the
variability in the observations assuming a fixed bloom initiation date,
we explore the potential to further improve model performance by
allowing the initiation date to vary based on an environmental trigger.
To assess potential environmental triggers, we compare June-October
distributions of factors thought to influence cyanobacteria dominance
(Bertani et al., 2017; Paerl and Otten, 2013) with their distribution dur-
ing the second half of July (i.e., the period around 24 July). We screen
daily water temperature, discharge, wind speed, and irradiance using
both visual inspection and Kolmogorov-Smirnov tests to assess how
the two distributions are different. The variable with the strongest dif-
ference is identified as the trigger variable, and we use a trigger thresh-
old value that corresponds to the late-July distribution and literature
(Section 3.3). In addition, a timing parameter, T, is included to assess
the number of consecutive days the threshold must be exceeded before
bloom initiation occurs.

2.4. Bayesian model calibration

Each model was calibrated through Bayesian inference, which com-
bines prior knowledge on model parameters (as probability distribu-
tions, f(8)) and information from observations (in this case, the
geostatistically-derived water quality conditions for the MPA), as de-
scribed by the likelihood function, L = f(y,|0). The result is the updated
posterior distribution of calibrated parameters, f(6|y,). Bayesian infer-
ence is numerically implemented using adaptive Metropolis sampling

hyd ro- river
meteorology loads
T mechanistic
model ﬂ @ M
A\ 4 7
bloom n @
initiation B m

24 Jul

Fig. 2. Model schematic where inputs/outputs are shown as parallelograms and estimated parameters are shown as circles. Core components of the baseline model (My) are shown in gray,
including baseline mechanistic rate parameters (o). Calibration data are distinguished from predictions with subscript ‘0’ (for observation). Enhancements associated with variable-rate
models (M, M, or M) are shown in purple, where k;, represents the varied rate (k;p, kg5, or both). Blue components are associated with a fixed (i.e., nominal) bloom initiation date,
whereas red components allow for a model-determined initiation date based on a hydro-meteorological variable and timing parameter 7. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)
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Table 1
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Prior information on parameters calibrated through Bayesian inference. All parameters have a lower bound of 0, as negative values are physically implausible. Prior distributions are char-
acterized by mean (u) and standard deviation (o), both referring to the normal distribution, N(z,0) before truncation.

Parameter Prior Source

distribution
Max. growth rate, kg [d=1 N(1.5,0.5) (Dietzel and Reichert, 2014; Leon et al., 2011; Zhang et al., 2008)
Loss rate, k; [d™'] N(0.25,0.125)
P-to-chl ratio, rpq [ug pg '] N(1.5,0.15)
N-to-chl ratio, 1, [ug pg '] N(7.2,0.72)
Denitrification rate, kq [d "] N(0.05,0.025)
Mineralization rate, k,, [d "] N(0.11,0.11)
Effective settling velocity, vy [m d '] N(0.11,0.13)
Half-saturation conc. for DRP, S, [ug 17'] N(3.0,1.0)
Half-saturation conc. for DIN, S, [ug 17] N(15,2.5)
Diffusive DRP flux, B [ug 171 d™] N(0.46,0.07)
Timing parameter, 7 [d] N(30,15)

(Chapra, 2008)

(Chapra, 2008)

(Chapra, 2008)

(Zhang et al., 2008)

(Dietzel and Reichert, 2014; Zhang et al., 2008; Sadeghian et al., 2018)
(Chapra et al., 2017; Leon et al., 2011)

(Chapra, 2008; Zhang et al., 2008)

(Chapra, 2008; Verhamme et al., 2016)

(Matisoff et al., 2016)

(Bertani et al., 2017)

(Del Giudice et al., 2013; Haario et al., 2001). Analyses are performed in
R (www.R-project.org/) and the model differential equations are inte-
grated using the package odin (FitzJohn, 2019).

Prior information on mechanistic parameters is represented by
normal distributions (Table 1). In addition, these distributions are
truncated at zero to avoid unrealistic, negative rates. Error parame-
ters (0q, Oy, Op) are in the same units as the transformed output
and are assigned a uniform probability distribution over positive
real numbers.

The likelihood function is used to learn from the observations and to
evaluate the match between model and observations for a given param-
eter set (Section S4). The likelihood is defined in a transformed space to
address heteroscedasticity (i.e., the tendency for uncertainties to be
higher when concentrations are higher). Here, we use a square-root
transformation (Section S5) similar to previous water quality studies in-
volving Bayesian inference (Del Giudice et al., 2018a, 2018b; Sikorska
et al,, 2015). Additionally, the likelihood function, model output, and
data were compared as 10-day averages determined at 10-day intervals
(reducing the number of observations by a factor of 10) to help account
for the reduced information content of autocorrelated data (Westra
et al, 2014). Consistent with this approach, the R? (i.e., coefficient of de-
termination based on the ratio of residual square error to total square
error around the mean, Faraway, 2015) values discussed hereafter also
refer to averaged data at 10-day intervals.
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3. Results and discussion
3.1. Lake Erie observations

Average MPA concentrations obtained through geostatistical analy-
sis of in situ data show recurring summertime patterns (Fig. 3). Both
river and lake DRP concentrations are high and chl concentrations are
low in early summer. P concentrations appear particularly high in
2015, which had the largest observed June discharge and DRP loads in
the studied decade. The average date of bloom initiation and
cyanobacterial dominance suggested by the literature (24 July,
Section 2.3) approximately corresponds to the observed beginning of
the main midsummer bloom. At that time, nutrient concentrations are
low and DRP reaches its minimum shortly thereafter (on average, on
12 August). Early-summer DRP peaks precede chl peaks by approxi-
mately two months (on average, 68 d) and bloom initiation by about
40 d. Thus, this study quantifies ecological lags that have been discussed
qualitatively in previous literature (Conroy et al., 2014; Newell et al.,
2019).

3.2. Simulations with baseline and enhanced bloom models

The different mechanistic models simulate observed algal and nutri-
ent patterns with varying degrees of success (Table 2). The baseline

Jun Jul Aug Sep Oct Nov

Jun Jul Aug Sep Oct Nov

Jun Jul Aug Sep Oct Nov

Fig. 3. Time series of chl and main limiting nutrient (DRP) concentrations for years with low (2009), average (2014), and severe (2015) blooms. Lacustrine observations are estimated from
sampling data using the method of Fang et al. (2019). Riverine DRP observations are smoothed for better visualization using a Gaussian function with window = 50 d. Note that some 2015
DRP values exceed the upper limit of the y-axis. The vertical lines indicate 24 July and 20 August, which are the nominal bloom initiation date from the literature (dashed) and the average

peak bloom date based on our data (solid) across all years (see Fig. S1 for all years).
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Table 2
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Results of the modeling experiments in terms of coefficient of determination (R?) for chlorophyll, DRP, and DIN; overall log-likelihood; and parameter estimates for algal growth (kg) and
loss (k;) rates. Parameters with ‘b’ subscript indicate the shifted rate, following cyanobacteria bloom initiation. For each parameter, the mode and standard deviation (in parentheses) of the
marginal posterior distribution is provided. Note that the last row is for a model with a temperature-mediated bloom initiation date (Section 3.3).

Model R2y R R2 log-L k[d] kip [d71] ke[d™'] kep[d7]
Mo 0.04 0.27 0.83 —2133 0.05 (0.01) NA 0.70 (0.07) NA

M, 0.15 028 0.83 —2125 0.12 (0.02) NA 1.03 (0.13) 2.09 (0.37)
M 0.37 0.38 0.82 —2100 0.30 (0.04) 0.11 (0.01) 1.81(021) NA

Mg 0.37 0.40 0.82 —2098 0.26 (0.05) 0.10 (0.02) 1.68 (0.22) 1.80 (0.35)
Mt 0.42 039 0.83 —2090 0.32 (0.05) 0.11 (0.01) 1.94 (0.23) NA

model (Mp) with constant parameters has negligible explanatory power
for chl relative to the mean (i.e., R> = 0.04), yet it explains 27% of DRP
variability and 83% of DIN variability. Simulated blooms start in early
June when nutrients are high, rather than in late July, and blooms
peak on average on 25 July, as opposed to the observed average peak
date of 20 August. The enhanced model (M) that allows the phyto-
plankton growth rate, kg, to change after the nominal bloom initiation
date explains 15% of chl variability and 28% of DRP variability, while pro-
viding similar predictive skill for DIN (relative to My). Alternatively,
allowing for a modified loss rate, kj, following bloom initiation (IM;) re-
sults in even better predictive performance (explaining 37% and 38%
of chl and DRP variability, respectively). Furthermore, model M, accu-
rately reproduces the nutrient-chl lag, while Mg simulates chl maxima
about 16 days too early.

Finally, the model that includes both variable growth and loss
rates (M, ¢) has approximately the same skill (R?) and overall likeli-
hood (log-L, representing model skill across all three calibration var-
iables: chl, DRP, and DIN) as M, despite the additional parameter. The
posterior parameter distribution for M; g shows a non-significant in-
crease in kg, compared to kg (probability of overlap, p = 0.5). At the
same time, M, ; shows a significant 65% decrease in phytoplankton
loss rate once blooms initiate (p < 0.001), similar to M;. Conse-
quently, model M, is found to be preferable to Mg and M, ¢. In general,
the results show that a model with lower late-summer algal mortal-
ity, consistent with observed shifts in phytoplankton community
composition to cyanobacteria, successfully captures the temporal
lag between nutrient inputs and the late-summer bloom.
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3.3. Predicting bloom initiation date

The analyses in the previous section were based on a nominal bloom
initiation date of 24 July (Fig. 2, blue). Here, we explore the predictabil-
ity of bloom initiation based on an environmental driver (Fig. 2, red),
which allows for the initiation date to vary across years and potentially
better captures the timing of the rapid increase in biomass associated
with the mid-summer bloom. Both visual inspection and test results,
comparing summer-wide vs. late-July distributions of potentially rele-
vant environmental variables, show that temperature, T, has the most
distinctive late-July distribution (Fig. 4). Also, we note that late-July T
is continuously above 20 °C, consistent with LE studies showing that
blooms tend to be associated with temperatures exceeding approxi-
mately 20 °C (Bertani et al., 2017; Stumpf et al,, 2012, 2016).

Selecting temperature as a trigger of bloom initiation, associated
with a transition to cyanobacteria dominance, we develop the final
model (M, t). Model calibration (Fig. S2, parameter T) indicates that
about 32 consecutive days of water temperatures above 20 °C is re-
quired to trigger a change in loss rate (k;). Based on this formulation,
predicted bloom initiation dates range from 19 July (in 2012, a year
with a warm summer) to 6 August (in 2015). This final model variant
explains 42% of chl variability (Fig. 5), compared to 37% using the nom-
inal initiation date of 24 July (M,, Table 2). Moreover, compared to the
original model with constant rate parameters (Mp), absolute improve-
ments in variance explained are 12% for DRP and 38% for chl.

Overall, this temperature-based formulation addresses a gap in
previous HAB modeling research regarding bloom initiation (Stumpf
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p =6.1e-04 - p = 1.0e-02
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Fig. 4. Observed probability distributions of candidate predictors of bloom initiation date ordered based on the degree to which late-July distributions deviate from June-October
distributions. Deviations are assessed based on visual inspection and the Kolmogorov-Smirnov test, where lower p-values indicate a higher confidence in the distributions being signif-

icantly different.
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Fig. 5. Observed and modeled time series of lacustrine concentrations for same years as Fig. 3. The baseline model (Mo, gray) is compared to the final model (M, blue). This latter model
has variable loss rates that are regulated by a temperature-dependent bloom initiation date (red vertical line represents the predicted initiation date, which is imperfect but represents a
major improvement relative to M). Note that for DIN, the two models generate nearly identical outputs (such that the gray line is obscured). Also, R? values are for all years and 10-day
data resolution, as used in the likelihood function. All studied years are presented in Figs. S3-S5 and cross-validation results with predictive uncertainty are displayed in Figs. S6-S8. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

et al, 2012; Verhamme et al., 2016). Additionally, M, represents
cyanobacterial dominance parsimoniously without explicitly parame-
terizing several phytoplankton groups. While ecologically complex
models can be used to explore mechanisms in more detail, they can
be challenging to parameterize and often have limited predictive capa-
bilities (Nelson et al., 2020; Shimoda and Arhonditsis, 2016).

3.4. Model fit and predictive performance

Our final model (M) explains about 40% of the chl and DRP variabil-
ity and over 80% of DIN variability (Table 2), on par with the performance
of other mechanistic eutrophication models (Arhonditsis and Brett,
2004). Also, performance in terms of relative error (for chl = 0.5) is com-
parable or better than higher-resolution and mechanistically-complex
phytoplankton models (e.g., relative error of 1.2-2.3, Sadeghian et al.,
2018). Model predictive performance is further corroborated via out-of-
sample validation. Specifically, we perform a leave-one-year-out cross-

validation to test how well the median and 90% prediction intervals rep-
resent bloom characteristics (i.e. concentrations) in each year, while ex-
cluding that year from calibration. Validation results (Figs. S6-S8) show
that out-of-sample performance is satisfactory (R? of about 0.30 for chl
and DRP and 0.82 for N) and the coverage of the 90% bounds is close to
optimal (89%, 85%, and 83%, for chl, DRP, and N, respectively).

The model also predicts the timing of bloom initiation consistent
with our geostatistical estimates (Fig. 5) and other observational studies
(Bridgeman et al., 2012; Stumpf et al., 2012). For example, we predict
the 2013 bloom initiation on 25 July, consistent with remote sensing ob-
servations indicating the cyanobacteria bloom started between 21 and
30July (Stumpfet al,, 2016). In another example, Bosse et al. (2019) ob-
served cyanobacterial dominance to start on roughly 4 August 2015 in
the MPA, and NOAA reported a rapid increase in cyanobacteria during
3-6 August (https://www.glerl.noaa.gov/res/HABs_and_Hypoxia/
lakeErieHABArchive/), consistent with our model-predicted bloom ini-
tiation date of 6 August 2015. Cross-validation also shows these bloom
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initiation dates to be highly robust (e.g., 21 July and 6 August were de-
termined for 2013 and 2015, respectively, when those years were omit-
ted from the calibration).

However, aspects of specific blooms are not captured by our model.
For example, blooms in 2012 and 2013 were more intense than simu-
lated (Fig. S3). These years have also been identified as problematic
when assessing relationships between nutrient loading and remotely
sensed estimates of western basin bloom size (Stumpf et al.,, 2016). In
our study, 2012 had the lowest spring (May-June) DRP and DIN loads,
yet MPA chl concentrations were about average. On the other hand,
2013 had the highest peak MPA chl, yet spring loads were about aver-
age. The study of these anomalous years could be worth future research.
At the same time, we note that both remote sensing and extracted chlo-
rophyll provide indirect and imperfect estimates of HAB biomass with
considerable uncertainty (e.g., Fang et al., 2019), such that exact
matches to observed bloom measurements are not expected.

3.5. Inferred nutrient cycling and limitation rates

Because parsimonious mechanistic models can fit output variables
well but with incorrect and compensating parameters (see e.g. discus-
sion of model inadequacies in Reichert and Mieleitner (2009)), it is im-
portant to also explore inferred process rates of our final model. The
estimated average sediment DRP flux is 0.21 (+0.04) ug 17" d=! or
0.63 mg m~—2 d~!, which is consistent with fluxes measured in the
MPA (0.56-1.08 mg m 2 d~!, Matisoff et al., 2016) and with phosphate
fluxes used in previous algal models of LE (1 mg m—2 d~}, Jiang et al.,
2015). The estimated dissimilatory N reduction rate kq (0.047 4+ 0.002
d=1), the major process for DIN removal in LE (Salk et al., 2018), is
close to the 0.05 d ™' rate used by Sadeghian et al., (2018). The esti-
mated remineralization rate (k,, = 0.024 + 0.005 d™') is between typ-
ical decay rates for labile and refractory particulate organic matter,
which are 0.05 d~! and 0.001 d™ !, respectively (Jiang et al., 2015;
Sadeghian et al., 2018). The estimated effective settling rate of nonalgal
biomass (v = 0.015 + 0.005 m d ') is lower than typical settling rates
(0.25md ™!, Jiang et al,, 2015). However, our value is logically slower
because nonalgal biomass here includes zooplankton and thus implic-
itly takes into account the additional time needed for this living biomass
to be processed before settling.
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Nutrient limitation is influenced by the Monod half saturation pa-
rameters for P (Sp) and N (S;) (Eq. (5)). In the final model, M, r, these
concentrations are estimated to be 5.26 + 0.7 and 13.7 + 2.7 [ug I™'],
respectively (Fig. S2). Probabilistic predictions of nutrient limitation
are obtained by propagating the posterior distribution of S, and S,
through the model, thus considering their uncertainties. Our results
show that in every summer, DRP is most commonly limiting algal pro-
duction, with DIN often constraining algal growth toward the end of
the season (on average, 26% of October days have probability of N limi-
tation >50%, Fig. 6). This pattern reflects that autumn DRP concentra-
tions typically increase faster than DIN (Fig. 5), consistent with
bioassays showing P limitation followed by N limitation as summer pro-
ceeds (Chaffin et al., 2014). On average, 84% of the days between 1 June
and 31 October show strong P limitation, 9% N limitation, and 7% little
nutrient limitation (i.e., ¢5 > 0.8). We note that nutrient simulations
are largely consistent across the different model versions (e.g., Fig. 5),
suggesting that these nutrient limitation results are robust to variations
in model form.

Nutrient limitation is most severe in early August (90% of the years
due to P deficiency) when chl concentrations are particularly high. In-
terestingly, however, the most severe limitation appears to have oc-
curred in early August 2012, when the algal growth rate was reduced
by 86% due to scarcity of N (Fig. S9). That year also had the longest pe-
riod of N limitation (30% of days), consistent with bioassays (Chaffin
et al,, 2014). Other years, such as 2008, show a high probability of con-
tinuous P limitation, consistent with cellular analyses (Chaffin et al.,
2011).

In general, nutrient limitation patterns are consistent with our sensi-
tivity analyses (conducted changing each riverine input individually by
420%, Fig. S10), showing that riverine P plays a key role in controlling
LE algal concentration. Average lake chl is much less sensitive to
changes in riverine DIN, including NHs. Previous studies also corrobo-
rate the finding that algal biomass is principally influenced by P avail-
ability (Ho and Michalak, 2017; Obenour et al., 2014; Stumpf et al.,
2016; Watson et al., 2016). At the same time, we note there is still de-
bate on how nutrients regulate overall bloom size, with some studies
emphasizing evidence in support of N limitation (Gobler et al., 2016;
Newell et al.,, 2019) and others assigning preponderant importance to
P (Scavia et al., 2016; Schindler et al., 2016). Additionally, beyond the
question of phytoplankton growth limitation considered here,
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Fig. 6. Time series of overall nutrient limitation term ¢y, with colour providing a probabilistic assessment of the limiting nutrient. Results are based on the final model (M; 1) using Eq. (5)
and the posterior distributions in Fig. S2. Phosphorus has high probability of limiting overall algal growth most of the time, whereas nitrogen often becomes more limiting in early autumn.

All studied years are shown in Fig. S9.
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variations in the form (N vs. P) and intensity of nutrient limitation can
regulate the dominance of different phytoplankton taxa (Reynolds,
2006). For example, N appears important for controlling cyanobacterial
species composition and bloom toxicity (Gobler et al., 2016).

3.6. Temperature as a key driver of bloom initiation

Our analysis of environmental bloom triggers (Section 3.3) is consis-
tent with other work that suggests temperature plays a key role in HAB
regulation (Paerl and Otten, 2013), especially the timing of bloom initi-
ation, which in LE is associated with a shift toward cyanobacteria dom-
inance (Stumpf et al., 2012; Watson et al., 2016). This temperature
effect is also consistent with findings from other lakes of similar latitude,
for which algal blooms appear to occur earlier as warming increases
(Peeters et al.,, 2007). We find that other meteorological variables such
as wind have a less clear connection with bloom initiation, consistent
with previous studies showing less strong relationships between algal
blooms and wind velocity (Bertani et al., 2017; Peeters et al., 2007). Ad-
ditionally, the importance of exceeding 20 °C in the model is consistent
with literature on cyanobacterial blooms in LE (Bertani et al., 2017;
Stumpf et al., 2016) and elsewhere (O'Neil et al., 2012; Robarts and
Zohary, 1987).

Given the apparent importance of water temperature, we analyze
the potential impact of a plausible climate-driven temperature increase
on bloom initiation and biomass accumulation. We choose a + 2 °C
temperature change that was used in previous eutrophication scenario
analyses (e.g., Del Giudice et al., 2019), which is also consistent with
the temperature increase to be expected around 2050 for LE in a ‘busi-
ness-as-usual’ scenario (Del Giudice et al., 2018b). This ceteris paribus
analysis shows that uniformly increasing historical water temperatures
by 2 °C would lead to bloom initiation 10 4 7 days earlier and would
cause a 23 £ 9% increase in average summertime chl due to higher
growth and mineralization rates, internal DRP flux, and longer periods
of cyanobacteria dominance with reduced mortality.

The link between warm temperatures and early bloom initiation
might be due to several mechanisms. First, higher temperatures may
lead to cyanobacteria growth rates higher than those of competing phy-
toplankton groups (Huisman et al., 2018; Paerl and Otten, 2013). These
differential temperature effects are commonly incorporated into
models with multiple phytoplankton groups (e.g., Verhamme et al.,
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2016). However, the empirical foundation of this mechanism has been
debated (Carey et al., 2012; Wagner and Adrian, 2009) and challenged
by a meta-analysis indicating that cyanobacteria growth rates are not
higher than those of other common algal groups, even at temperatures
above 20 °C (Liirling et al., 2013).

Another mechanism for temperature-regulated bloom initiation is
based on reduced zooplankton grazing at warmer temperatures
(Kosten et al., 2012; Liirling et al., 2013). There is evidence that warming
can lead to a reduction in zooplankton body size and grazing, including
a decline in large cladocerans (Moore and Folt, 1993; Strecker et al.,
2004), which are the main grazers of cyanobacteria (Liirling et al.,
2013). This mechanism appears consistent with Twiss et al. (2014),
who discussed that during non-summer months, grazing keeps the LE
phytoplankton population at equilibrium, and that algal blooms could
be initiated by a reduction of grazing pressure by large zooplankton.

A third mechanism by which temperature may regulate bloom initi-
ation is through strengthening water column stability and stratification
(Robarts and Zohary, 1987; Wagner and Adrian, 2009). On the one
hand, the impact of stratification on MPA cyanobacteria is expected to
be small because the MPA is shallow and frequently mixed (Bosse
et al, 2019) with no clear effects of wind on bloom initiation
(e.g., Fig. 4 and Bertani et al., 2017). However, Fang et al. (2019) showed
that even for relatively shallow (3 m) areas of western LE, summertime
algal concentrations can be elevated near the surface, likely due to
temperature-induced water stability and cyanobacterial buoyancy. In-
deed, Han et al. (2019) showed that warm quiescent summer condi-
tions can be advantageous to cyanobacteria even in a shallow
polymictic waterbody. Overall, there are multiple mechanisms by
which increased temperature can promote cyanobacteria dominance,
and it is likely that a combination of these factors lead to bloom initia-
tion in western LE.

3.7. Reduced grazing as a mechanism for bloom accumulation following
initiation

Results of our model experiments (Table 2) show that following
bloom initiation, biomass accumulation is driven primarily by a down-
ward shift in the loss rate rather than an upward shift in growth rate.
Furthermore, time series of simulated growth rate adjustments
(Fig. 7) show that, after mid-July, growth rates decrease dramatically
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Fig. 7. Time series of total growth rate adjustment (¢;¢n1.06672° term in Eq. (1)) according to the final model (M, ). The highest growth rates generally occur in June and July, when
nutrient concentrations are elevated (Fig. 6), irradiation is peaking, and water temperature is increasing (see Fig. S11 for all years).
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even as temperature continues to increase, mostly because of severe nu-
trient shortages (Fig. 6) and self-shading of concentrated algal biomass
(Eq. S1).

The importance of changes in loss rate due to reduced cyanobacteria
grazing has been recognized in LE and other freshwater systems. During
periods not dominated by cyanobacteria, Gobler et al. (2008) showed
that the primary source of LE phytoplankton mortality is zooplankton
grazing, and Lavrentyev et al. (2004) showed herbivory can exceed
90% of daily phytoplankton production in coastal areas of LE. The hy-
pothesis of high herbivory keeping chl concentration low in early sum-
mer (despite high nutrient concentrations and growth rates) is also
supported by observations (Conroy et al., 2017) and modeling results
(Jiang et al., 2015) that show zooplankton biomass in LE coastal areas
peaks around June.

In contrast, the low mortality rate we estimate under bloom condi-
tions (k;, =~ 0.1 d™!, Fig. S2) is consistent with observations in western
LE that show mesozooplankton grazing loss on cyanobacteria is about
0.06 d ! and with the tendency for grazing to decline as cyanobacterial
density increases (Davis et al., 2012). This decline in zooplankton preda-
tion once cyanobacteria reach high density has been shown in other sys-
tems as well, and might be facilitated by algal toxicity and colonial
structure (Paerl and Otten, 2013; Wagner and Adrian, 2009; De Stasio
et al., 2018). Consistent with these observational studies, some mecha-
nistic modeling studies deactivate the grazing loss for cyanobacteria
(Chapra et al., 2017; Zhang et al., 2008). Compared to these previous
studies, however, our approach demonstrates how long-term datasets
can be used to statistically infer the magnitude and timing of this shift
in grazing, which is critical to understanding and predicting bloom
formation.

4. Summary and implications

In this study, we combine a mechanistically parsimonious model of
phytoplankton dynamics, Bayesian inference, and a high temporal-
resolution dataset to provide new insights into HAB development and
nutrient cycling. Our results help explain the observed time lag between
high nutrient concentrations and bloom initiation in Lake Erie. We sug-
gest that, during early summer, high nutrient concentrations and mild
temperatures favor rapid algal growth rates, yet phytoplankton biomass
does not dramatically increase because of zooplankton grazing
pressure.

Bloom initiation, typically occurring in late July, is associated with
warmer temperatures that favor cyanobacteria. Once cyanobacteria
are established, substantial biomass accumulation is driven primarily
by reduced grazing rates. We additionally find that about one month
of water temperatures continuously exceeding 20 °C is an apparent trig-
ger for the reduced grazing associated with cyanobacteria dominance,
substantially improving our ability to predict temporal bloom dynamics.
While leave-one-year-out cross validation indicates robust model per-
formance, our parameterization of bloom timing is based on just
10 years of data, such that future testing and refinement could be ben-
eficial as more data become available. In general, modeling results indi-
cate that warmer temperatures due to climate change will lead to
earlier initiation of the HAB season and thus potentially extended dis-
turbances to the health and economics of communities surrounding
this and similar lakes. In this context, a reduction of nutrient loadings
appears to be even more crucial to curb eutrophication and its undesir-
able consequences.
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