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States and Canada agreed to phosphorus load reduction targets. While the load targets were guided by an ensemble
of models, none of them considered the effects of climate change. Some watershed models developed to guide load
reduction strategies have simulated climate effects, but without extending the resulting loads or their uncertainties
to HAB projections. In this study, we integrated an ensemble of four climate models, three watershed models, and
four HAB models. Nutrient loads and HAB predictions were generated for historical (1985-1999), current
(2002-2017), and mid-21st-century (2051-2065) periods. For the current and historical periods, modeled loads
and HABs are comparable to observations but exhibit less interannual variability. Our results show that climate im-
pacts on watershed processes are likely to lead to reductions in future loading, assuming land use and watershed
management practices are unchanged. This reduction in load should help reduce the magnitude of future HABs, al-
though increases in lake temperature could mitigate that decrease. Using Monte-Carlo analysis to attribute sources
of uncertainty from this cascade of models, we show that the uncertainty associated with each model is significant,
and that improvements in all three are needed to build confidence in future projections.
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1. Introduction

In response to increased harmful algal blooms (HABs), hypoxia, and
nearshore algae growth in Lake Erie (Scavia et al., 2014), the United
States and Canada agreed to a 40% reduction in annual total phosphorus
(TP) load from 2008 levels (GLWQA, 2016). The Maumee River, the pri-
mary source of the nutrients driving Lake Erie HABs (Scavia et al., 2016),
has an additional target to reduce the March-July TP and dissolved reac-
tive phosphorus (DRP) loads by 40% in 9 out of 10 years. These targets
were guided by an ensemble of lake models (Scavia et al., 2016), includ-
ing three that focused on HABs (Bertani et al., 2016; Stumpf et al., 2016,
and Verhamme et al., 2016). However, none of the target-setting plan-
ning scenarios accounted for climate change. And, while an ensemble
of Maumee watershed models showed that large-scale implementation
of multiple agricultural conservation practices could achieve the 40% re-
duction on average (Scavia et al., 2017a; Martin et al,, 2019), these sim-
ulations also did not account for climate change.

Most HAB models used to explore climate effects (e.g., Ralson and
Moore, 2020, Glibert et al., 2010) focus on temperature because of its
importance for HAB development. Toxin-forming cyanobacteria taxa
(primarily Microcystis in Lake Erie) are favored by higher temperatures
(Paerl and Huisman, 2008) and a warmer climate would lead warmer
waters, enhanced stratification, and earlier and likely more intense
blooms (Gobler, 2020; Del Giudice et al., in press). However, how
climate-influenced changes in nutrient loads and how their uncer-
tainties propagate to HAB development has received less attention.
For example, Salmaso et al. (2018) showed that warming in deep
lakes can lead to oligotrophication in spite of high nutrient loads.

A number of studies explored potential impacts of climate on nutri-
ent loads to Lake Erie; some based on adjusted historical climate data
(e.g., Daloglu et al., 2012; Bosch et al., 2014; Jarvie et al., 2017) and
others based on output from climate models (e.g., Johnson et al., 2015;
Verma et al., 2015; Culbertson et al., 2016; Kalcic et al., 2019; Kujawa
et al., 2020). Some of these studies suggest P loads will increase in re-
sponse to climate change, while others suggest a decrease. The diversity
of projected climate impacts on P loads could be attributed in part to the
range of time scales used in these regional analyses. For example,
Johnson et al. (2015), Bosch et al. (2014), Daloglu et al. (2012), Jarvie
et al. (2017), and Kujawa et al. (2020) evaluated responses at annual
scales, whereas Kalcic et al. (2019) analyzed spring (March-]July)
loads and Culbertson et al. (2016) and Verma et al. (2015) analyzed
monthly loads. This diversity of results could also be influenced by
the climate and watershed models chosen for analysis, whether or
not model outputs have been bias corrected, or how modeling tech-
niques were linked. Moreover, to our knowledge, no modeling stud-
ies explicitly propagated load changes and their uncertainties onto
HAB projections.

In addition to the conflicting load projections, uncertainties arise
from the use of different time frames and forms of P as inputs to HAB
models. The timeframe crucial to Lake Erie HABs is approximately
March through July (Scavia et al., 2016) because that is a period of inten-
sive flow and nutrient loading prior to the primary cyanobacteria
growth period. But, precisely which months and which forms of P are
used depends on the HAB model. For example, Stumpf et al. (2016)
found the strongest correlation with peak HAB abundance was with
the March-]July load, Ho and Michalak (2015) found the strongest rela-
tionship with the April-July load, whereas Obenour et al. (2014) and
Bertani et al. (2016) found the strongest relationships with roughly
half of the February load plus the March-June load. To complicate
these relationships further, Obenour's relationship was with TP, Ho's
was with DRP, and Stumpf and Bertani were with bioavailable P esti-
mated as different combinations of TP and DRP.

To approach this variability in the impacts of load estimation sys-
tematically, we recalibrated four existing HAB models with a consis-
tent set of historical P loads and HAB extent estimates (2002-2017),
and used them to explore changes in HAB extent among historical
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(1985-1999), current (2002-2017), and future (2051-2065) time
periods. Simulated loads were generated from three watershed
models that were driven by either observed climate data or a suite
of climate models that have been shown to perform well in the
study region (Basile et al., 2017). We first use the modeling results
to understand the changes between historical and current periods,
and then to explore potential loads and HAB extents under a future
climate. Following that, we use Monte-Carlo analysis to quantify
and attribute sources of uncertainty from this cascade of models.

2. Materials and methods
2.1. Study area

The 17,000 km? Maumee River watershed (Fig. 1a) is characterized
by low-sloping to flat topography and heavy, clayey soils with poor
natural drainage. Productive agriculture in the Midwest/Great Lakes re-
gions has benefited from widespread installation of subsurface drainage
tiles (Evans and Fausey, 2015). Row crop agriculture is dominant
(~70%), consisting primarily of rotations of corn, soybean, and winter
wheat (Fig. 1b).

The Maumee River flows into the 3000 km? western basin of Lake
Erie that is relatively shallow, averaging 7.4 m (Millie et al., 2009)
with a water residence time of 20-40 days, and subject to intermittent
stratification and wind-driven mixing (Wynne et al., 2011). The Detroit
and Maumee rivers contribute 41% and 48% of the TP load to the west-
ern basin, respectively. While the P load from the Detroit River is com-
parable to that of the Maumee, its high flow and low P concentration
tend to dilute or deflect the Maumee-driven HAB (Michalak et al.,
2013).

Seasonal precipitation in the study area has a unimodal pattern
with a summer maximum (Basile et al., 2017). For 1980-1999, aver-
age annual precipitation was 908.2 mm, with a February minimum
(46.7 mm month™!) and July maximum (97.8 mm month™!).
While the highest fraction of total annual precipitation occurs in
summer, over one-fourth of annual precipitation occurs in spring
when evapotranspiration is lower.

2.2. Climate models and bias correction

Climate models (Fig. 1c,d) used to provide historical (1985-1999) and
mid-century (2051-2065) inputs to the watershed models were the 4 se-
lected from 18 Coupled Model Intercomparison Project (CMIP5, Taylor
et al., 2012) models that minimized seasonal biases in temperature, pre-
cipitation, snow fall, and snow cover over the western Lake Erie basin
(Miralha et al., In Press): CCSM4, CNRM-CM5 (CNRM), IPSL-CM5A-MR
(IPSL), and MPI-ESM-MR (MPI). While these models minimize seasonal
bias, the models still over predict precipitation and under predict temper-
ature. As a result, they also over predict DRP and TP loads when used as
input to the watershed models. Miralha et al. (in press) tested different
climate bias-correction methods and concluded that the Delta, Quantile
Delta Mapping (QDM), and N-dimensional probability density function
(MBC-N) methods performed best, with MBC-N performing best overall.
So, we applied all three methods for our change analyses (Section 2.8).
However, to keep the number of climate models (4) similar to the num-
ber of watershed (3) and HAB models (4) for the uncertainty attribution
assessment (Section 2.9), we only used MBC-N. Additional details on the
evaluation and selection of climate models and bias correction methods
are in Miralha et al. (in press) and in the Supporting Information.

2.3. Watershed models

The three watershed models used here were previously developed,
calibrated, and validated for this watershed using the Soil and Water As-
sessment Tool (SWAT) models. The Apostel version used by Miralha
et al. (in press) was developed at the agricultural field-scale resolution
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Fig. 1. Study site showing (a) Maumee Watershed, (b) Land use, (c) climate model grid, and (d) climate observation grid for the western Lake Erie region.

(ca. 74 ha). A second SWAT model was developed through a
stakeholder-engaged process to study land management and climate
change (Kalcic et al., 2016). The third model (Kujawa et al., 2020) is
an updated version of the Kalcic model with new inputs, crop manage-
ment, and parameterizations that was used in an ensemble modeling
project. The calibration and validation statistics for all three models
were all rated ‘good’ or better (Apostel et al., in review, Table S1) against
standards (Moriasi et al., 2007). The three SWAT models represent a
range of process implementations, land management inputs, calibra-
tions, time periods, and parameterizations as described in Table S2
and Supplemental Information. As such, the three models represent
alternative plausible representations of the Maumee watershed, and
the variability among them provides a measure of watershed model
uncertainty.

2.4. Phosphorus load estimates

For HAB model calibrations, daily TP and DRP concentrations were
downloaded from Heidelberg University's National Center for Water
Quality Research (https://ncwqr.org/monitoring/data/), and daily flow
data were downloaded from the United States Geological Survey (USGS,
http://www.usgs.gov/water) station USGS-04193500 at Waterville, OH
through 2017. Daily loads were calculated and aggregated to monthly
loads as described in Obenour et al. (2014).

For simulating HAB responses to historical (1985-1999), current
(2002-2017), and mid-century (2051-2065) conditions, median
monthly loads for each 15-year time period were produced with
the SWAT models driven by climate model outputs as described in
Sections 2.2 and 2.3, and then aggregated to the loading periods
and forms of P required by the individual HAB models as described
in Section 2.6. When observed climate data were used, they were
from Menne et al. (2012). Because we are interested in isolating
the effect of climate on these loads, the point sources, crop rotations,
and other agricultural practices used in SWAT were the same for the
historical, current, and future simulations.

To generate future HAB-model-specific P load distributions for the
Monte Carlo analysis (Section 2.9), we tested gamma, lognormal, and
Weibull distribution fits to SWAT monthly output over the 2051-2065
period for each of the SWAT models, using the R package “fitdistrplus”
(version 1.1-1) to fit the gamma distribution by maximum likelihood
(Delignette-Muller and Dutang, 2015), and found the gamma model
provided the best fit (Figs. S1, S2).

2.5. HAB extent estimates
HAB extent, expressed as dry weight biomass, was obtained from

three independent datasets: two satellite-derived (Stumpf et al.,
2016; Manning et al., 2019) and one a geostatistical synthesis of in


https://ncwqr.org/monitoring/data/
http://www.usgs.gov/water

D. Scavia, Y.-C. Wang, D.R. Obenour et al.

situ observations (Fang et al.,, 2019). The Stumpf et al. (2016)
cyanobacteria index (CI) is based on processing satellite image spec-
tra specific for cyanobacteria, whereas the Manning biomass esti-
mates are based on chlorophyll-specific spectra (Sayers et al.,
2016). These satellite-derived estimates give similar results for rela-
tively high chlorophyll concentrations, but both are constrained to
near-surface observations. The Fang estimates are based on in situ
chlorophyll observations, which are sparser but allow for full
water-column estimates. Because the Stumpf estimates are lake-
wide, whereas the other two estimates cover only the western
basin, the Stumpf estimates were clipped to the western basin as de-
scribed by Fang et al. (2019). Because of the differences among these
approaches and because we are most interested in inter-annual var-
iability, we scaled the Sayers and Stumpf estimates to the Fang esti-
mates using the ratio of their averages. Results are presented in
1000 metric tons (TMT, hereafter) dry weight based on conversion
factors described in Fang et al. (2019).

2.6. HAB models

We used four previously published models that predict HAB extent
as a function of Maumee River P loads. The Obenour et al. (2014)
model predicts peak western basin bloom biomass (Z, TMT) as a func-
tion of spring TP load (W) and a temporal trend representing increased
HAB sensitivity to loads:

Z=PBy+PBo +PwW+PT+e+m for(Bg+RyW+pT)>0
Z=P,+e+m for(By+PyW+pT)<0

where {3; are model coefficients, T is the prediction year relative to 2007
(i.e.,year - 2007), e is model prediction error, and m is measurement er-
ror across the three extent estimates (see Section 2.5). W is the sum of
weighted monthly loads with the weights estimated along with the
other model coefficients during calibration (Section 2.7). The model,
originally calibrated for 2002-2013 with two independent HAB extent
estimates (one from in situ observations and one from remote sensing),
resulted in an r? of 0.92 and a cross-validation r? of 0.84 (Obenour et al.,
2014).

The Bertani et al. (2016) model is a modification of Obenour et al.
that replaced TP load with bioavailable P load defined as:

W = DRP + 0 x (TP—DRP),

with © a calibration parameter (Section 2.7). This model was originally
calibrated to 2002-2014, resulting in an r? of 0.84 and a cross-validation
r2 of 0.70 (Bertani et al.,, 2016).

The Stumpf et al. (2016) model is based on bioavailable P and cali-
brated to CI for 2002-2015. Their formulation was:

Log;o(Z) = log 1o(Pp) + W +e+m

where o and 3 are regression coefficients, and W is March-July bio-
available P, calculated as:

W = DRP + (1—S) x B x (TP—DRP),

where B is the bioavailable proportion of particulate P (TP-DRP) (0.26,
Baker et al,, 2014a) and S is the proportion of bioavailable P that settles
from the water column (0.7, Baker et al., 2014b). They found that apply-
ing March-July loads, with the exclusion of July in years with cold Junes,
best described the observations. Stumpf et al. (2016) did not report r or
perform cross-validation, but reported the mean absolute deviation and
standard deviation of observed HAB extent against the model regression
line (excluding 2012 and 2015) of 1.87 and 2.26 in their CI units that
range between 1.3 and 29.9.

The Ho and Michalak (2015) model was calibrated to the average of
three remote sensing areal extent estimates (km?) from 1984 to 2015,
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using the current year's spring (April-July) DRP load (W) and the
most recent cumulative 9-year DRP load.

Z= BWW + ﬁtDRpfifyear + Bb +e-+m

That implementation resulted in an r? of 0.75 and a cross-validation
12 of 0.70.

To separate uncertainty due to HAB measurement error and model
prediction error, we used a hierarchical modeling approach to expand
the original model formulations and simultaneously calibrate the
model to all three sets of HAB extent estimates (Obenour et al., 2014).
The three individual extent estimates in each year i are modeled with
error “m” arising from a probability distribution with mean y; and stan-
dard deviation Oy,. In this formulation, y; represents the true, unknown
HAB extent in year i and is itself modeled as arising from a probability
distribution with mean equal to the deterministic model prediction
and standard deviation O.

2.7. HAB model calibration

The models were calibrated with data from a common period
(2002-2017) based on Bayesian inference using a Markov Chain
Monte Carlo (MCMC) sampling algorithm implemented within
WinBUGS interfaced with the R package, R2ZWinBUGS (Lunn et al.,
2000; R Core Team, 2015; Sturtz et al., 2005). Detailed information
on the MCMC algorithm settings, chain convergence evaluation,
and parameter prior distributions can be found in Obenour et al.
(2014) and Bertani et al. (2016). We tested models using different
probability distributions (normal, lognormal, and gamma) to repre-
sent “e” and “m”, and found the gamma model performed best for
the Obenour, Bertani, and Ho models and the normal model per-
formed best for the log-transformed Stumpf model (i.e., residuals
follow a lognormal distribution).

2.8. HAB simulations

Each HAB model uses a unique representation of P loading. Ho,
Obenour, and Bertani include terms to represent presumed changes in
HAB sensitivity to loads. Ho used the cumulative DRP load defined as
the sum of the previous nine water years (October-September) through
March of the year being forecast. For historical and current period sim-
ulations, we used the measured 9-year cumulative loads. For future sim-
ulations we used the SWAT-forecast load scaled with the ratio of
observed historical mean to the SWAT historical hindcast mean
(2011 MT). For comparison, we also used the average observations
from the current (2002-2017) period (4111 MT) (Fig. S3).

Obenour and Bertani include a time term based on the prediction
year. For calibrating and simulating the current period, we used the ac-
tual prediction years. For the historical period, we used T = —2.5, which
is the average from 2002 to 2007 representing a period of lower sensi-
tivity. Because it is not clear how this sensitivity would change in the fu-
ture, we used the average from 2008 to 2017 (5.5), the period after the
increase in the cumulative load (Fig. S3). For comparison, we also used
the mean value for the entire current period (2.5).

Stumpf suggested there was no sensitivity change during their cali-
bration period (2002-2015) but instead accounted for the potential im-
pact of colder springs by excluding July loads for the two years (2003
and 2008) that had a relatively cool June. When we followed that
same approach during recalibration, the model's fit was poorer than
when all years were included. So, we included all years for calibration
and historical simulations. As Stumpf et al. (2016) suggested, we did
not make “cold-June” adjustments for future climate simulations.
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2.9. Uncertainty attribution

We used Monte Carlo simulations to explore sources of uncertainty
in the HAB predictions. We compared the variances of future loads
and HAB extents from the HAB models run with fixed HAB parameter
values and fixed loads to variances from a series of probabilistic model
runs (Fig. 2). HAB model parameter uncertainties were represented by
sampling from the WinBUGS-generated joint posterior parameter dis-
tributions. When exploring model parameter uncertainty, we also in-
clude uncertainty in the sensitivity terms (Section 2.8) by drawing
values from their uniform distributions with minima and maxima
from the current time period. In addition, we performed simulations
with and without sampling from the HAB model predictive and mea-
surement error distributions.

For measures of combined climate, SWAT, and HAB model uncer-
tainties, we used the 15 years of future monthly loads from the 3
SWAT models that were driven by the 4 bias-corrected climate models
(n =15 x 3 x 4 = 180, Fig. 2). To remove watershed model uncer-
tainties, we averaged the outputs from the 3 SWAT models across
each year and climate simulation (n = 4 x 15 = 60) before fitting the
load distributions. For all probabilistic simulations, loads were drawn
from gamma probability distributions fit to the HAB-model-specific P
loads calculated from the ensemble of SWAT model runs. When remov-
ing both climate- and watershed-model uncertainties, we used median
loads from the full uncertainty case.
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The means, medians, and variances of predictive HAB distributions
converged after about 4000 samples. So, to be conservative, for each
Monte Carlo analysis we performed 10,000 simulations drawing from
the appropriate load, parameter, and error distributions. To eliminate
the occasional extreme and highly unlikely (<1%) HAB extent estimates
generated from combinations of values from the tails of these distribu-
tions, we analyzed results that fell within the 99% confidence interval of
the Monte Carlo outputs.

3. Results
3.1. HAB model recalibration and response curves

The four HAB models were calibrated to the three sets of HAB extent
estimates, with resulting r? values of 0.63, 0.84, 0.78, and 0.76 for
Stumpf, Ho, Bertani, and Obenour models, respectively (Fig. 3). These
12 values are slightly lower than those reported for the original models;
however, if the apparent outlier year 2013 is removed, the values in-
crease to 0.78, 0.90, 0.85, and 0.82, respectively, similar to those re-
ported for the original models.

Load response curves were developed for each HAB model (Fig. 4)
based on calibrated parameter estimates (Table S3) and model-
specific spring loads (see Section 2.6). The 95% credible intervals for
Obenour and Bertani are larger than for Ho because the uncertainty
comes from four-five parameters compared to only three for Ho. The
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Fig. 3. Predicted vs. observed HAB extents for the four HAB models: (a) each model plotted against the average of the three observed extent estimates; (b) time course of model results and

the three sets of observations.
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Fig. 4. Response curves (thick solid lines) showing HAB extent as a function of model-specific loads, average extent observations (boxes), 95% credible intervals for parameter uncertainty
(thin solid lines), parameter and prediction errors (dashed lines), and parameter, prediction, and measurement error (dotted lines). These response curves use the 2008 time term for the

Obenour and Bertani models, and the average 9-year cumulative DRP load for the Ho model.

Stumpf credible intervals grow quite large at higher loads because of the
exponential form of the model. In all cases, model prediction error ()
and measurement error (Oy,) were comparable, with ratios between
0.94 and 1.2 (Table S3). These uncertainties characterize inter-annual
environmental and observational stochasticity that is not accounted
for in the deterministic relationships of the HAB models.

For the simulations discussed below (Figs. 5-7), results are displayed
as box plots for each HAB and SWAT model output, representing the 12
climate cases (4 models x 3 bias corrections) when modeled climate
was used or the 15 years when observed climate or loads were used
for current and historical periods. Measured and modeled loads are av-
eraged HAB-model-specific loads.

3.2. Current simulations

Simulated 2002-2017 March-July TP and DRP loads from the SWAT
models were not significantly different from observed loads (Wilcoxon
p-values were 0.36-0.9 from each paired group comparison, Fig. S4a, c).
The SWAT models, driven by observed climate data, also captured the
features of the HAB-model-specific measured loads (Fig. 5a, b). Mean
HAB-model-specific SWAT loads based on observed climate (515 MT,
Fig. 53, Table 1) were similar to those calculated from measured loads
(537 MT, Fig. 5b). Averaging across HAB models, the HAB extents
based on measured loads (23 TMT, Fig. 5d, Table 1) and based on
SWAT loads using observed climate inputs (23 TMT, Fig. 5¢c, Table 1)
also align with observed extents (25 TMT).

The mean, median, and interquartile range of HAB extents from
Obenour, Bertani, and Ho, when driven with measured loads (Fig. 5d),
were consistent with observed extents; Stumpf's were underestimates.
HAB models driven with simulated loads varied across SWAT models,
but most straddled the observations, with the Stumpf model tending
to underestimate overall (Fig. 5¢).

3.3. Historical simulations

Simulated 1985-1999 March-July TP loads, driven by climate model
output, were not significantly different from measured loads for the

Apostel and Kalcic SWAT models (Wilcoxon p-values = 0.92 and 0.27,
respectively), but were underestimated by 19% with the Kujawa
model (p = 0.01, Fig. S4b, d). The three models overestimated mea-
sured DRP loads by 77-114%, likely because the models did not adjust
for changes in management practices between the historical period
and current period for which the models were calibrated.

Historical loads simulated with observed climate (349 MT, Fig. 6b)
fell between measured loads (376 MT, Fig. 6¢) and those simulated
with modeled climate (294 MT, Fig. 6a) (Table 1). While the simulated
load for the Obenour model (Fig. 6a,b), which is based only on TP, was
below the measured load (Fig. 6¢), the simulated loads for the three
models that use combinations of TP and DRP were comparable to mea-
sured loads. HAB extents were low and similar across all three loading
cases and HAB models (10-12 TMT). Historical loads driven with cli-
mate model outputs and their associated HAB extents (Fig. 6a, d) are
comparable to, but less variable than, those driven by observed climate
(Fig. 6b, e) or driven by observed loads (Fig. 6¢, f).

3.4. Future projections

Simulated future P loads based on climate-model inputs resulted in
an average HAB extent of 13 TMT (Table 1, Fig. 7). These values are sim-
ilar to those from the historical period and lower than those from the
current period.

Averaging across all climate, SWAT, and HAB models, projected P
loads and HAB extents decreased 46% and 44% from current conditions,
respectively. Future loads decreased 13% and HAB extent increased 17%
compared to the historical period. This divergence in the direction of
change between loads and HABs can be influenced by assumptions
about changes in HAB-load sensitivity built into the Obenour, Bertani,
and Ho models. These simulations assumed that the Obenour and
Bertani future sensitivities remain the same as the later part of the cur-
rent period (time term = 5.5), representing increased sensitivity, and
that the 9-year cumulative DRP load for the Ho model is represented
by future SWAT loads (2011 MT). If we set the Obenour and Bertani sen-
sitivity term to the average of the current period (2.2), the future fore-
cast decreases from 19 TMT to 14 TMT. However, if we set the Ho
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Fig. 5. Current period (2002-2017) phosphorus load simulations (a) and observations (b), as required by the HAB models, and the corresponding HAB extent observations and estimates
based on simulated (c) and observed (d) loads. Obenour (blue), Bertani (orange), Ho (grey), and Stumpf (red) are the four HAB models. Obenour loads are TP, Bertani and Stumpfloads are
different estimates of bioavailable P, and Ho loads are DRP. The Obenour and Bertani load window is 60-70% of March plus April-June, the Ho load window is March-July, and the Stumpf
load window is April-July. Apostel (Ap), Kalcic (Ka), and Kujawa (Ku) are the three SWAT models.

sensitivity term to the average values for the current period (4111 MT),
the HAB forecast increases from 8 TMT to 21 TMT. As a result, the fore-
casts averaged across all 4 HAB models change little, increasing from 13
to 14 TMT, a 40% decrease from the current period and a 26% increase
from the historical period. Uncertainties associated with the sensitivity
terms are also addressed in Section 3.5.

3.5. Sources of uncertainty

There was considerable within- and across-model uncertainty. For
example, the coefficients of variation (standard deviation/mean) for

simulated loads in the historical and current periods were 70% and
83% when simulated with observed climate (Table 1) and 54% and
59% for historical and future periods simulated with climate models.
Similarly, HAB simulation coefficients of variation ranged between
16% and 58%. Given these levels of uncertainty, we explored various
contributions to overall load and HAB uncertainties.

Simulated future HAB extent and load medians from the Monte Carlo
analysis were relatively stable across all uncertainty cases (HAB mean =
12 TMT, load mean = 278 MT, Fig. 8) and similar to the deterministic
models described above (13 TMT, 279 MT, Table 1). Because loads for
the individual HAB models are composed of different combinations of
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Fig. 6. Phosphorus load simulations for the historical time period (1985-1999) based on (a) climate model input to SWAT, (b) observed climate input to SWAT, and (c) measured loads, as
required by the HAB models. Panels (d), (e), and (f) show HAB model predictions corresponding to the loads in (a), (b), and (c), respectively. Obenour, Bertani, Ho, and Stumpf are the four
HAB models; Apostel (Ap), Kalcic (Ka), and Kujawa (Ku) are the three SWAT models.

months, TP, and DRP, we compare their coefficients of variation more parameters than Ho and Stumpf. As additional sources of un-
(CoV). Obenour and Bertani values (45-55%) were somewhat higher certainty are added, HAB extent variance increases for all HAB
than Ho and Stumpf (ca. 30-35%). With fixed loads and uncertain models until the case that includes prediction and measurement er-
model parameters, the Obenour and Bertani models generated rors when they all approach a variance of 100 TMT? (final set of bars
higher HAB variance (first set of bars in Fig. 8a) because they have in Fig. 8a).
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Fig. 7. Future mid-century (2051-2065) phosphorus load simulations based on climate model input to SWAT (a) and the corresponding HAB extents (b). Obenour, Bertani, Ho, and Stumpf
are the four HAB models; Apostel (Ap), Kalcic (Ka), and Kujawa (Ku) are the three SWAT models.
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Table 1

Comparison of simulated and measured averages and coefficients of variation (CoV) for
loads (MT) and HABs (TMT). Load and HAB simulations are shown for both observed
and modeled climate inputs. Simulation results reflect an aggregation across the climate,
SWAT, and HAB models. *Measured loads and HABs are excluded from the averages.

Averages* CoV
Historical Current Future Historical Current Future
Load
Observed climate 349 515 70% 83%
Modeled climate 294 279 54% 59%
Simulated* 321 515 279
Measured 376 537
HAB
Observed climate 12 23 36% 58%
Modeled climate 10 13 16% 43%
Simulated* 11 23 13
Measured load 10 23
Measured HAB 25

These Monte Carlo simulations were performed with different
combinations of uncertainty sources to allow us to isolate their im-
pacts on overall HAB forecast variance. The results of source combi-
nations are described here, and the isolated sources are discussed
in Section 4. The variance across the four deterministic models
(Fig. 8b), representing uncertainty in HAB model structure, was rel-
atively low (6.0 TMT?), reflecting the fact that the forecasts are
well within the range of the calibration data. When HAB model pa-
rameter uncertainty or climate model uncertainty are added, vari-
ance increases to 35 TMT? and 23 TMT?, respectively. Adding both
Climate and SWAT uncertainties to the HAB model structure uncer-
tainty only increased variance from 23 to 29 TMT2.

Adding HAB model prediction error to HAB model structure uncer-
tainty results in a variance of 45 TMT?; adding HAB measurement
error to that increases the variance to 98 TMT2. These latter two vari-
ance sources represent uncertainties associated with interannual sto-
chastic properties that are not accounted for in the deterministic
(structural) relationships of the HABs models. As such, they do not affect
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the mean HAB predictions, although if these errors were reduced, HAB
model parameter uncertainties would also be lower.

4. Discussion
4.1. Climate impacts on HAB-relevant spring loads

Simulated current P loads, driven with observed climate data, match
measured loads well (Fig. 5), with some variation among SWAT models.
Historical loads, driven by either observed or modeled climate, also
match measured loads with some differences among SWAT models
(Fig. 6). Inter-annual load variability, when driven by climate models,
was considerably less than the variability in measured loads or loads
simulated with observed climate. This would be expected because the
bias-corrected climate outputs tend to converge toward common, ob-
served values, thus reducing the SWAT output variability.

The simulated substantial increase between historical and current
loads is consistent with Daloglu et al. (2012), who suggested the inter-
action of climate change and agricultural practices over the last half of
the 20th century was a potential cause of increased DRP loads. Jarvie
et al. (2017) also suggested that increased DRP loads in the early
2000s were due to increases in both runoff and flux of DRP from
the land.

Our mid-century load projections that are slightly lower than the
historical period and 44% lower than the current period (Fig. 7,
Table 1) are also consistent with earlier work. Using climate models
and change factors applied to observed data, Verma et al. (2015)
projected Maumee loads would decrease by 2045-2055. Driving a wa-
tershed model with an ensemble of 15 global climate models that
were bias-corrected and downscaled, Culbertson et al. (2016) projected
P loads may decrease due to increased plant uptake and decreased win-
ter surface runoff. Kalcic et al. (2019) also projected less nutrient runoff
by mid-century due to increased evapotranspiration and decreased
snowfall, despite projected moderate increases in intensity and overall
precipitation. Miralha et al. (in press) also associated mid-century load
reductions with reduced early spring rainfall and higher temperatures
and evapotranspiration leading to decreased flow.
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Fig. 8. a) Predictive variance of each individual HAB model and (b) combined HAB model medians (line) and variances (bars) from Monte Carlo simulations using different combinations of
uncertainty sources. X-axis indicates whether the model property is fixed (open) or uncertain (shaded). Numbers above the bars are variances.
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4.2. Climate impacts on HABs

The four HAB models performed well when calibrated against the
three independent sets of HAB extent observations for 2002-2017,
with r? values comparable to those reported for the original models
when one apparent outlier year was removed. HAB-nutrient response
curves based on these calibrations were used to simulate historical
(1985-1999), current (2002-2017), and future (2051-2065) HAB ex-
tents based on both modeled and measured loads. Historical simula-
tions (Fig. 6) were consistent with anecdotal information that HABs
were rare prior to the mid-1990s (Vanderploeg et al., 2001; Conroy
et al., 2005), and comparable to observations from the period of record
prior to the expansion in 2008 (Fig. 3a). Current-period simulations
aligned with both average (Fig. 5) and interannual (Fig. 3) observations,
and our climate-based future forecasts suggest that HABs would de-
crease by 44% from the current period (Fig. 7, Table 1).

While our forecasts for mid-century HAB extent indicate an encour-
aging reduction from the current state, it is important to note that other
research projecting mid-century load decreases also project increases in
loads toward the end of the century (Verma et al., 2015; Cousino et al.,
2015). In addition, we only evaluated the effect of climate change on nu-
trient loads, not on temperature-dependent HAB growth. As a species
favored at warmer temperatures, Microcystis would likely have addi-
tional advantages in a warmer future (Paerl and Huisman, 2008;
Mullin et al., 2020). For example, using a screening model of the com-
bined effects of increased temperature and climate-induced changes
in nutrient loads to assess potential changes in cyanobacteria HABs
across U.S. lakes and reservoirs, Chapra et al. (2017) showed that HAB
duration is likely to increase, primarily due to water temperature in-
creases, from the current average 7 days per year to 16-23 days in
2050 and 18-39 days in 2090. Using a mechanistic HAB model, Del
Giudice et al. (in press) also showed that a 2 degree increase in Lake
Erie water temperature could result in roughly 20% more intense
blooms initiating 10 days earlier. There is also the potential that blooms
could become more toxic at higher temperatures (e.g., Davis et al.,
2009), offsetting gains resulting from reduced nutrient loading.

4.3. Uncertainty propagation

We used Monte Carlo analysis to evaluate the relative contributions
of climate, SWAT, and HAB model uncertainties to HAB projection un-
certainty. Kujawa et al. (2020) characterized flow and nutrient load
uncertainty from six climate models and five SWAT models for the Mau-
mee River watershed and reported that climate model uncertainty was
the dominant source of uncertainty for predicting total discharge,
evapotranspiration, tile discharge, and total nitrogen loading; while
SWAT uncertainty was the main source for surface runoff and P load-
ings. In our simulations that extend the analysis to HAB uncertainties,
we found that SWAT model variance (6 TMT?) was comparable to the
HAB model structural uncertainty (6 TMT?), but they each contributes
less than half of the variance attributed to the climate models (17 TMT?,
Fig. 9). Combining our estimate of HAB model parameter uncertainty to
HAB model structure uncertainty results in a variance contribution of
35 TMT?, higher than the combined climate and SWAT model contribu-
tions (23 TMT?). These results used the MBC-N climate bias correction
method. The relative contributions were similar when using other
methods, although Delta provided the lowest overall variance (Fig. S5).

This large contribution from HAB model parameter uncertainty, rel-
ative to the climate and SWAT models, may be because the Bayesian
estimation provided formal estimates for them in addition to the struc-
tural uncertainties estimated by averaging outputs from the HAB
models with fixed loads and parameter values. In contrast, parameter
and structural uncertainties in the climate and SWAT models were esti-
mated only by averaging across those models. Variability among climate
models may also have been reduced by bias correcting their outputs be-
fore using them in SWAT (Yuan et al., 2020). For example, the climate
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Fig. 9. Contributions to overall HAB prediction variance. The column on the left shows
variances associated with the prediction of the future mean condition, while the right
column shows additional variance associated with predicting bloom size in a particular year.

model contribution to overall HAB variance increased dramatically
from 17 to 92 TMT? if model output was not bias-corrected, increasing
the overall HAB extent variance of over 152 TMT? (Fig. S5).

The relatively low variance contribution from SWAT is likely be-
cause we were not able to account for parameter uncertainty inde-
pendently as we did with the HAB models. In addition, while these
SWAT implementations were quite different (Table S2), they were
all calibrated and validated with a common set of data (Table S3).
While this relatively low uncertainty is encouraging, Apostel et al.
(in review) showed that even though each model performed well
at the watershed outlet, their ability to match observations at the
field scale were different, and often lacking.

4.4. Reducing uncertainties

Improvements in climate-based HAB forecasts can be affected
through improvements in regional climate projections and watershed
models, along with enhanced monitoring to better bound HAB model
parameters. A more accurate evaluation of climate model uncertainties
would involve using non-bias corrected models. However, to better rep-
resent measured nutrient loads for HAB forecasts, the corrections were
necessary for TP and DRP (Miralha et al., In Press). As climate projec-
tions improve to finer resolutions and improve their accounting for
large water bodies, it may be possible to both reduce uncertainties
and forego bias correction.

Watershed models in the Great Lakes region have been converging
on a consistent set of forecasts at the watershed outlet, which is fortu-
nate for making connections to HAB models. However, more work
needs to be done to test and validate that these models are also repre-
sentative of upstream and field-scale processes (Apostel et al., in
review). It is likely that improvements at the field scale should also re-
duce uncertainties at the outlet.

HAB uncertainty from model prediction error and measurement
error was larger than the combined forecast uncertainties from the cli-
mate, SWAT, and HAB models (Fig. 9). These variances represent uncer-
tainties associated with interannual stochastic properties that are not
accounted for in the models and errors associated with HAB extent mea-
surements, and therefore do not affect the mean HAB predictions. How-
ever, reducing these errors would lead to lower model parameter
uncertainties and increase confidence in those long-term forecasts.
Measurement error is best illustrated by comparing three sets of inde-
pendent extent estimates (Fig. 3). Improvements in temporal and spatial
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coverage, for example as suggested from the geostatistical analysis by
Fang et al. (2019), should help reduce that uncertainty. Prediction errors
arise because, for example, these models assume that only the P load de-
termines maximum bloom extent. Processes not in these models that can
contribute to the uncertainty include: light and/or nitrogen limitation;
temperature-regulated growth, meteorological controls on stratification,
vertical mixing, and advection; and grazing and sinking losses. Including
aspects of these processes, as some have done (e.g., Del Giudice et al,, In
Press; Verhamme et al., 2016), could reduce prediction error. But, because
these models can introduce dozens of additional parameters, this may be
at the cost of increased parameter uncertainty.

While we only used four climate models, the number of models is
comparable to the number of HAB and SWAT models used, and it likely
approximates at least a subset of climate model variability. The three
SWAT models were considerably different implementations, but quan-
tifying parameter uncertainty directly, as done for the HAB models,
would have increased their uncertainty, as would including additional
types of watershed models. A more extensive analysis with additional
climate and watershed models would be helpful in prioritizing uncer-
tainty reduction strategies.

Recognizing uncertainties as they propagate from climate models
and through watershed and HAB models is important, and efforts to re-
duce them are needed. While environmental models will always con-
tain some level of uncertainty, they nonetheless provide useful inputs
and guidance for policy development, and as Reichert and Borsuk
(2005) demonstrate, the uncertainty in the difference of model predic-
tions corresponding to different policies may be significantly smaller
than the uncertainty in the predictions themselves. Recent efforts to
use multiple models to provide ensemble forecasts and scenarios
(e.g., Scavia et al.,, 2016, 2017a, 2017b; Martin et al., 2019) potentially
mediate some of the uncertainty.
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