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Abstract 

Quantifying parameter and prediction uncertainty in a rigorous framework can be an important 

component of model skill assessment.  Generally, models with lower uncertainty will be more 

useful for prediction and inference than models with higher uncertainty.  Ensemble estimation, 

an idea with deep roots in the Bayesian literature, can be useful to reduce model uncertainty.  It 

is based on the idea that simultaneously estimating common or similar parameters among models 

can result in more precise estimates.  We demonstrate this approach using the Streeter-Phelps 

dissolved oxygen sag model fit to 29 years of data from Chesapeake Bay.  Chesapeake Bay has a 

long history of bottom water hypoxia and several models are being used to assist management 

decision-making in this system.  The Bayesian framework is particularly useful in a decision 

context because it can combine both expert-judgment and rigorous parameter estimation to yield 

model forecasts and a probabilistic estimate of the forecast uncertainty.  
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1. Introduction 

Bottom-water hypoxia (dissolved oxygen ≤ 2 mg l-1) has become common in many coastal 

marine ecosystems (Diaz 2001), causing stresses in some estuarine species (Eby et al. 2005, 

Craig and Crowder 2005).  Hypoxia is generally attributed to eutrophication induced by 

excessive nutrients, though other sources may contribute to oxygen demand (Mallin et al. 2006).   

Low oxygen conditions were first reported in Chesapeake Bay in the 1930s (Newcombe and 

Horne 1938, Officer et al. 1984).  Though hypoxia may have been an intermittent natural 

phenomenon, sediment core analyses indicate that the frequency and extent of Chesapeake Bay 

hypoxia increased with European settlement in the watershed and the consequent land cover 

changes (Cooper and Brush 1991, Cooper 1995).  

 Reducing the severity of Chesapeake Bay hypoxia is an important restoration goal, and 

several water quality models have been used to help decision-makers estimate the pollutant load 

decreases needed to attain the desired improvements.  The complexity of these models has 

ranged from a three-dimensional dynamic model (Cerco and Cole 1993) to simpler statistical 

relationships (Hagy et al. 2004).  The range of modeling approaches used in Chesapeake Bay 

reflects an ongoing debate among water quality modelers regarding the relative utility of 

complex vs. simple models (Borsuk et al. 2001), each with characteristic advantages and 

disadvantages.  If we understand the important system processes and can express them 

mathematically, then process-based models should provide reliable predictions of system 

behavior.  Alternatively, statistical models help quantify predictive uncertainty; however, 

statistical models rarely have an explicit mechanistic basis, reducing their confidence for use in 

predictions outside the bounds of past observation.   
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 More recently, Scavia et al. (2006) used a compromise approach, applying the Streeter-

Phelps equation (Streeter and Phelps 1925), a simple process-based model to describe 

Chesapeake Bay dissolved oxygen (DO) patterns.  The Streeter-Phelps dissolved oxygen model 

can be written as: 
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where DO = the dissolved oxygen concentration (mg/L), DOs = the saturation oxygen 

concentration, k1 = the BOD decay coefficient (1/day), k2 = the reaeration coefficient (1/day), 

BODu = the ultimate BOD (mg/L), x = the downstream distance (km), v = stream velocity 

(km/day), and Di = the intitial DO deficit (mg/L).  This model describes the DO depletion that 

occurs when oxygen consuming substances initially remove oxygen from a stream and 

subsequent recovery as reaeration occurs.  This approach to modeling coastal and estuarine 

hypoxia has also been used successfully for the Gulf of Mexico major hypoxic region (Scavia et 

al. 2003, 2004). 

 Herein, we extend the approach of Scavia et al. (2006) and implement a Bayesian version 

of the Streeter-Phelps Chesapeake Bay model, exploiting available dissolved oxygen 

measurements to estimate model parameters and inputs of interest, and their uncertainty.  The 

Bayesian approach provides a rigorous framework for uncertainty analysis (Pappenberger and 

Bevin 2006), a useful component of model skill assessment, which also yields key information 

for management decision-making (Reckhow 1994).  Bayesian inference is based on Bayes 

Theorem: 
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where π(θ | y) is the posterior probability of θ (the probability of the model parameter or input 

vector, θ, after observing the data, y),  π(θ) is the prior probability of θ , (the probability of θ  

before observing y), and f (y | θ) is the likelihood function, which incorporates the statistical 

relationships as well as the mechanistic or process relationships among the predictor and 

response variables.  In many modeling applications π(θ) is a set of fixed values (probability 

distributions with a probability mass of one on a particular value for each θ ), often based on 

precedent, experience, or tabulated literature values (Bowie et al. 1985).   

Scavia et al. (2006) used fixed a priori values for the model parameters based on a 

combination of available information and expert judgment.  While Scavia et al. (2004, 2006) 

used Monte Carlo analysis to characterize prediction variance due to uncertainty in one of the 

model parameters, v, Bayes theorem provides a rigorous framework to simultaneously relax 

more of the fixed model inputs and incorporate uncertainty in these values by expressing them as 

probability distributions.  Higher uncertainty is expressed by choosing a large variance for the 

prior distribution, while more certain values can be represented with a smaller prior variance 

(with a fixed point value being the extreme case of absolute certainty).  If there is little prior 

information available about a particular input value, then a non-informative (also called vague or 

diffuse) prior distribution can be used.  A non-informative prior generally has a very large 

variance and minimally influences the posterior distribution of θ .  The posterior distribution, 

π(θ | y), is a weighted combination of the information conveyed by the prior distribution and the 

likelihood function (i.e. the combined model and data).  Thus, if the data contain a lot of 

information about the value of θ  (as conveyed via the likelihood function) even a prior 

distribution with a small variance may have only a modest influence on the posterior distribution. 
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 Using Bayes theorem there is no distinction between model parameters and other 

unknown model inputs such as unobserved initial conditions, missing values of state variables, or 

external inputs.  Any unknown quantity can be estimated if the combination of the prior 

distribution and likelihood function provide sufficient information.  In the Streeter-Phelps 

equation k1, k2 , and v would typically be considered the model parameters, which could be 

estimated from data, while DOs, DOi, and BODu are measured boundary conditions, initiation 

conditions, and observed inputs, respectively .  However, with sufficient data for DO and x, any 

of these parameters and/or inputs can be estimated and, in fact, the mathematical structure of the 

Streeter-Phelps equation makes it possible to estimate all of them simultaneously, although 

extreme correlation can impose numerical difficulties when estimating some parameter/input 

combinations. 

 An important difference between Bayesian methods and most parameter estimation 

approaches is that Bayesian inference emphasizes using the entire posterior distribution of 

parameter values, not just a single set of optimal values.  This feature can be particularly 

important when the posterior distribution is asymmetric with optimal values that are different 

from the mean values (Stow et al. 2006), or when the model response surface is nonlinear. 

Predictions for unobserved or future ys (denoted y~) are assessed over the entire posterior 

parameter distribution as: 

θθπθθπ
θ

dyyfyy )|()|~(),|~( ∫=   (3)   

which is referred to as the predictive distribution.  Equation 3 indicates that, future y values are 

predicted by considering all probable combinations of the parameter vector θ, which translates 

into a mapping of the distribution of θ to a distribution of y~.  The predictive distribution 

incorporates prediction uncertainty resulting from uncertainty in all estimated model inputs, 
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including their covariance, as well as the model error term and uncertainty in the model error 

variance. 

 

2. Methods 

Scavia et al. (2006) used the Streeter-Phelps model to calculate summer steady-state sub-

pycnocline oxygen concentration profiles along the main stem of the Chesapeake Bay (Figure 1) 

for each year from 1950-2003.  Because the Chesapeake Bay is vertically stratified with surface 

waters flowing seaward and bottom waters flowing landward, they estimated sub-pycnocline 

oxygen demand as a point source of organic matter, proportional to Susquehanna River nitrogen 

load, at the southern end of the mid-Bay region (ca. 220 km from the Susquehanna River mouth).  

While physical and biological processes relating external nitrogen loading to hypoxia are 

actually quite complex, the model’s ability to reproduce the observed interannual variability in 

both profiles and hypoxic volume, and the fact that the model calculates a theoretical profile at 

steady state (as opposed to via detailed temporal dynamics), help justify their use of the 

simplifying assumptions. 

DO profiles of data were computed from interpolated observations that populated a 

regular grid with dimensions, first at 1-m resolution in the vertical and then at 1-km in the 

horizontal across constant depths (Hagy et al. 2004).  From this grid, we produced down-estuary 

profiles for 137 values along the ~220 km transect for each of the 36 years from 1950 – 2003 

that we used in our analysis. 

 Historically, the practical implementation of Bayesian methods was limited because most 

non-linear process-based models result in mathematical forms that are analytically intractable 

when incorporated into Bayes theorem.  Thus, numerical estimation was required which made 
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applications using models of more than a few dimensions impractical because of the extensive 

computer time needed.  However, the advent of fast, cheap, and widely available desktop 

computing has fostered development of algorithms that make numerical estimation for Bayesian 

approaches feasible (Gelfand and Smith 1990).  These Markov Chain Monte Carlo (MCMC) 

algorithms begin with user-provided start values and after a sufficient “burn in” period converge 

in distribution to the posterior.  Once converged, they effectively provide a representative, 

proportional, random sample from the posterior distribution.  The resultant sample can then be 

used to precisely estimate any function of the posterior distribution by plugging the sampled 

values into the function.  To implement our model, we used WinBUGS, a free, downloadable 

MCMC software designed for Bayesian applications (Gilks et al. 1994).  All of our inference is 

based on samples of 1,000 taken from the posterior distribution after a sufficient “burn-in” to 

ensure the MCMC algorithm had converged. 

 To incorporate the Streeter-Phelps model (equation 1) into Bayes theorem (equation 2), 

we added an error term, ε, to the model and assumed ε to be normally distributed with zero mean 

and variance of σ2.  This assumption is consistent with nonlinear regression methods based on 

least-squares or maximum-likelihood optimization approaches (Bates and Watts 1988).  

Additionally, Scavia et al. (2006) incorporated a term, F, to estimate the fraction of surface 

organic carbon production that settles below the pycnocline.  With the inclusion of an additive 

error term, ε, equation 1 becomes: 
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If ε is assumed to be independent and normally distributed with mean = 0, and variance = σ2 then 

equation 4 is incorporated into the following likelihood function: 
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 (5)    

where h denotes each of the observed DO estimates along the transect and σ2 is a parameter that 

can be estimated from the data.  Equation 5 denotes the likelihood function for any single year; 

for all g = 1-29 years of available data the likelihood function is: 
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(6). 

Scavia et al. (2006) held DOs, k1, and F constant across years at fixed values of 5 mg l-1, 0.09 

day-1, and 0.85, respectively.  The vertical flux parameter, k2, was estimated using a salt-and-

water-balance box model, adapted from Hagy et al. (2004), and applied to Chesapeake Bay by 

Hagy (2002).  The resulting values that varied along the transect, were used for all years. 

Additionally, they used fixed a priori estimates of BODu and Di, for each year.  BODu and Di 

were derived from the Susquehanna load and observed values at the model origin, respectively. 

In subsequent analyses, they used v as a calibration term and varied it among years to improve 

the model fit. 

 To demonstrate the utility of Bayesian approaches we start with the inputs used by Scavia 

et al. (2006) and systematically relax some of the fixed a priori assumptions, using the available 

data to estimate these inputs via Bayes Theorem.  We impose a hierarchical structure on the 
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model, allowing selected inputs to differ by year, with the assumption that the yearly estimates 

arise from a common normal distribution (Borsuk et al. 2001).  The mean and variance of this 

“parent” normal distribution each require a prior distribution.  We first allow k1 to differ by year 

and estimate posterior distributions for all 29 years.  Then we do the same for DOs and estimate 

posterior distributions for each of the 29 years.  Scavia et al. (2006) used fixed Di values that 

differed across years; similarly we estimate Di for all 29 years allowing it to differ by year.  In 

each of these three demonstrations we use non-informative priors for the estimated model inputs.  

That is, we chose priors with large variance so that the posterior parameter distributions would 

effectively be determined by the data, not by our a priori beliefs about plausible parameter 

values.  For a fourth demonstration we simultaneously estimate k1, DOs, and Di, allowing each of 

them to differ by year, again using non-informative priors for all of them.  Finally, because 

estimating k1, DOs and Di, simultaneously, results in unrealistic estimates for DOs, we use a 

semi-informative prior distribution for DOs (normal with mean = 5.0 and standard deviation = 

0.167).  This semi-informative prior places a loose a priori constraint on DOs values, allowing 

the data to influence them, but keeping them in a physically plausible range.  In all instances we 

use a non-informative prior distribution for model error variance σ2. 

 

3. Results 

 3.1 - k1, DOs, and Di independently estimated 

 When k1 is estimated as a free parameter (Figure 2a), most yearly k1 values differ from 

the 0.09 value used by Scavia et al. (2006), though they vary about 0.09.  Generally, k1 decreases 

through time and the posterior precision (variance-1) increases; however, four years late in the 

series (1995, 1999, 2000, 2001) assume larger values with wider posterior distributions.  The 
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precision of the posteriors varies considerably among years; with k1 precisely estimated in some 

years but with relatively high uncertainty in others.  Most of the posteriors are asymmetric with 

slightly longer positive tails, though posterior means and medians tend to be approximately 

coincident.  All estimates are consistent with plausible values reported for this coefficient (Bowie 

et al. 1985). 

 Similarly, when allowed to differ by year, DOs (Figure 2b) is generally higher than the 

5.0 mg l-1 constraint imposed by Scavia et al. (2006).  Estimates show an overall increase with 

time while the relative precision of the DOs posteriors is more consistent than that of k1.  

Posterior means range from ~ 4.8-7.5 mg L-1, plausible for the salinity/temperature conditions of 

Chesapeake Bay. 

 Yearly Di estimates also differ from imposed values (Figure 2c), though the range of 

values among years is consistent with values used by Scavia et al. (2006).  Generally, the earlier 

years tend to be higher than values used by Scavia et al. (2006) and the latter years tend lower.  

Like DOs posterior precision for Di is also fairly consistent across years in contrast to k1. 

  

 3.2 - k1, DOs, and Di simultaneously estimated 

 Estimating k1, DOs, and Di simultaneously reveals correlation among the three parameters 

(Qian et al. 2003).  Most k1 posterior means exhibit slight decreases over the years, and the 

precision of most of the k1 posteriors increases (Figure 3a), as compared to the estimates from 

estimating only k1 (Figure 2a).  The pattern with time still displays a general decrease, with a few 

unusually high values late in the series.   

 Means for both DOs and Di exhibit marked increases over time (Figures 3b and 3c, 

respectively), when compared to the estimates obtained when these inputs were individually 
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estimated (Figures 2b and 2c, respectively).  DOs and Di are strongly positively correlated in this 

application; increases (or decreases) in one will tend to be accompanied by increases (or 

decreases) in the other.  Conversely, DOs and Di are weakly negatively correlated with k1. When 

estimated with k1 and Di, some DOs posteriors assume values as high as ~11 mg l-1, a physically 

unrealistic range given Chesapeake Bay salinity/temperature conditions.  These unrealistic 

values result largely from the correlation among the three model inputs, a consequence of the 

mathematical structure of the model (Stow et al. in press).  Bayes theorem provides a convenient 

approach to this problem; instead of using a non-informative prior for DOs, a semi-informative 

prior can be used, effectively imposing a loose constraint on DOs.  To “discourage” DOs from 

attaining implausible values (Figure 3b) we re-estimated k1, DOs, and Di simultaneously using a 

normal mean of 5.0 and standard deviation of 0.167 for the prior distribution of DOs, capturing 

the a priori belief that DOs values greater than ~ 5.5 mg l-1 are unlikely.  With this constraint, k1, 

DOs, and Di respond as expected; overall DOs and Di decrease and k1 increases (Figure 4a, 4b, 

4c).  

 

 3.3 - Model error variance 

 The model error term, ε, captures the component of DO variability that is not described 

by the Streeter-Phelps model, including observation error, and the error variance, σ2, is an index 

of the magnitude of that un-described variation.  Expressing this term as the model error standard 

deviation, σ, maintains the units in mg l-1 providing a more intuitive interpretation.  With all 

parameters fixed, the posterior mean for σ ~ 1.63, indicating a high predictive uncertainty (Figure 

5).  As the model fit to the observed DO data improves, by estimating various inputs, the 

posterior mean for σ decreases.  With k1 estimated, the posterior mean for σ drops to ~ 1.41; with 
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DOs estimated, the posterior mean drops to ~ 1.34; and with Di estimated, the posterior mean is ~ 

1.48.  However, the biggest decrease is realized when all three inputs are estimated.  In that case, 

the posterior mean for σ declines to ~ 0.73.  When the semi-informative prior is imposed on DOs, 

the posterior mean for σ rebounds slightly to ~ 0.93. 

 Predictive uncertainty arises from a combination of the input uncertainty and the model 

error variance.  Generally, predictive uncertainty decreases as more inputs are estimated and the 

model error variance declines; however this decline in the model error variance is partially offset 

by the accompanying input uncertainty that arises when inputs are estimated rather than fixed.  

Figure 6 compares model mean predictions and corresponding 95% predictive intervals from the 

model with fixed parameters and the model with the semi-informative prior for DOs for four 

representative years.  In all cases the predictive interval width is greatly reduced when inputs are 

estimated instead of fixed, reflecting the decreasing model error variance (Figure 5).  

Additionally, the mean predictions track the observed values better with estimated inputs 

because different values of k1 and DOs were estimated for each year instead of using one value 

chosen to work acceptably well among all years. 

 

4. Discussion  

 Ensemble estimation is based on the premise that, when multiple response variables share 

common or similar parameters, simultaneous estimation of these parameters yields more precise 

inference (Congdon 2001), a result of “borrowing strength from the ensemble” (Morris 1983).  

This idea has deep roots in the Bayesian literature (Box and Draper 1965, Efron and Morris 

1972, 1973a) and underlies Empirical Bayes approaches (Efron and Morris 1973b, 1975) as well 
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as their closely-related, current incarnation as hierarchical/multilevel models (Gelman and Hill 

2007, Qian and Shen 2007).  

 This approach represents a compromise.  On one hand, a model developed using data 

from multiple years will probably be less accurate for a specific year, because the model 

represents the average of the years.  On the other hand, a model based only on year-specific data 

will have a larger uncertainty because of the smaller year-specific sample size.   Hierarchical 

models provide a rigorous methodology to systematically combine information from several 

sources and appropriately weight the group-specific or year-specific information depending on 

the degree of similarity to other groups in the data set. 

 In our application we somewhat arbitrarily chose three model parameters k1, DOs, and Di 

to estimate as ensembles (within a hierarchical structure), differing by year but arising from a 

common parent distribution, while σ2 was modeled to have the same value for all years.  Many 

other combinations are possible, for example σ2 could also be allowed to differ by year with (or 

without) a common parent distribution, or any of the model parameters could be estimated by 

assuming they are the same across years, differ by year but have a common hierarchical 

structure, or are independent from year to year (no hierarchical structure).  However, allowing all 

the estimated parameters to independently differ by year, without a hierarchical structure, is 

equivalent to estimating each year separately and confers none of the benefit of ensemble 

estimation.  Our intent in this presentation was largely to illustrate the methodological approach; 

we are continuing to experiment with the model by systematically altering the underlying 

assumptions and estimating different parameter sets.  In our eventual application of this model 

we intend to examine differences in some of the parameters that have occurred through time, 

such as F and BODu  Most of the parameter time-trajectories presented herein (Figures 2-4) 
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reveal an increase in variance occurring in the mid-1980s, consistent with previous work that has 

suggested important changes in the estuary occurred at approximately that time (Hagy et al. 

2004, Kemp et al. 2005).  These changes may indicate important ecosystem processes that have 

changed over time and provide clues for more effective management.  Additionally, this model 

provides a basis to estimate the effect of future BOD reductions and the corresponding 

probabilities of attaining management goals (Borsuk et al. 2002).  Future model improvements 

will also include incorporation of a lognormal model error to bound DO predictions at zero.  The 

Bayesian approach can facilitate many different model error forms and other alternatives to a 

normal error structure may be considered as well. 

 Bayesian methods are sometimes criticized because they require subjective user-provided 

prior information.  Berger and Berry (1988) countered this criticism, demonstrating that 

statistical inference is inherently subjective, often rather subtly.  The use of expert judgment-

based a priori fixed values for model parameters is common and well-accepted in 

environmental/ecological modeling, yet it is highly subjective.  Our presentation reveals that 

Bayesian approaches allow reduced subjectivity by using imprecise a priori information thus, 

letting the observations more strongly influence inference.  The semi-informative normal prior 

we used for DOs with mean = 5.0 and standard deviation = 0.167 is consistent with the a priori 

belief that there is only a one percent chance that DOs values fall outside the 4.5 – 5.5 mg l-1 

range, yet many of the final estimates were outside the range (Figure 2-4).  This result illustrates 

that even with a relatively tight a priori constraint Bayesian methods can permit the data to be 

influential.  

 While Bayesian methods are sometimes criticized for subjectivity, empirical modeling is 

occasionally disparaged as “simple curve fitting” because the model is largely determined by 
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observed data.  Our results demonstrate that the Bayesian framework facilitates a combined 

modeling approach, allowing the simultaneous use of a priori fixed parameter values, semi-

informative prior distributions, and non-informative priors.  Thus, Bayesian modeling further 

facilitates the compromise modeling philosophy advocated by Scavia et al (2006). 
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Figure Captions 

Figure 1 

Location map of Chesapeake Bay 

Figure 2 

Posterior distribution samples for each of the 29 years of available data for k1 (a), DOs (b), and Di 

(c), with k1, DOs, and Di independently estimated.  Horizontal dashed blue lines indicate fixed 

values used by Scavia et al. (2006) for k1 and DOs; blue circles indicate values used by Scavia et 

al. (2006) for Di.  Dotted horizontal line at zero on Di plots included for visual reference.  Box 

and whisker icons depict posterior sample mean (black dot), median (horizontal red line in box), 

interquartile range (box), and extreme values (whiskers). 

 

Figure 3 

Posterior distribution samples for each of the 29 years of available data for k1 (a), DOs (b), and Di 

(c), with k1, DOs, and Di jointly estimated.  Horizontal dashed blue lines indicate fixed values 

used by Scavia et al. (2006) for k1 and DOs; blue circles indicate values used by Scavia et al. 

(2006) for Di.  Dotted horizontal line at zero on Di plots included for visual reference.  Box and 

whisker icons depict posterior sample mean (black dot), median (horizontal red line in box), 

interquartile range (box), and extreme values (whiskers). 

 

Figure 4 

Posterior distribution samples for each of the 29 years of available data for k1 (a), DOs (b), and Di 

(c), with k1, DOs, and Di jointly estimated and semi-informative prior distribution for DOs.  

Horizontal dashed blue lines indicate fixed values used by Scavia et al. (2006) for k1 and DOs; 
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blue circles indicate values used by Scavia et al. (2006) for Di.  Dotted horizontal line at zero on 

Di plots included for visual reference.  Box and whisker icons depict posterior sample mean 

(black dot), median (horizontal red line in box), interquartile range (box), and extreme values 

(whiskers). 

 

Figure 5 

Posterior distribution sample representing model error standard deviation (σ) with fixed inputs 

fixed used by Scavia et al. (2006), only k1 estimated, only DOs estimated, only Di estimated, k1, 

DOs, and Di simultaneously estimated with non-informative priors, and k1, DOs, and Di estimated 

with semi-informative prior for DOs. 

 

Figure 6 

Model predictions and observations (blue line) for representative years.  The red dotted lines are 

the mean prediction and bounds of the 95% predictive interval from the model with fixed inputs. 

The solid dark lines are the mean prediction and bounds of the 95% predictive interval from the 

model with k1, DOs and Di estimated, and a semi-informative prior on DOs.  The dashed line 

depicts predictions from the model used by Scavia et al. (2006). 
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