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Foreword
Together with the oncoming environmental cyber-
infrastructure,1 including novel sensors and sensor 
technologies, the Environmental Observatories (EOs) 
of the National Science Foundation (NSF) share the 
collective ambition of bringing unprecedented streams 
of observations to bear on Environmental Science in 
the decades to come. Mathematical and computational 
models are intrinsically generic entities, cutting 
across specific, disciplinary boundaries, in particular 
here, those of the Observatories in the Ocean 
Sciences (ORION), Ecology (NEON), Hydrology and 
Environmental Engineering (WATERS Network). 
What new opportunities for research might these EOs 
bring about for environmental modeling, especially 
where those opportunities benefit greatly from the 
cross-cutting, collaborative, integrative style of model 
building?

This White Paper sets out thirteen Grand Challenges 
of the future for environmental modeling in response 
to that question. The same grand challenges are also 
set out in the Synopsis of this Paper, which is available 
as a separate document at www.modeling.uga.edu/
EOModels and which can be read as an extended 
Executive Summary of the present document. Both the 
Synopsis and this White Paper introduce and discuss 
each challenge in the same format: of the context and 
foundations of — hence, the justification of — why 
each should have been identified as a challenge in the 
contemporary research scene; followed by expression 

1  The Engineering Research Plan for the WATERS 
Network defined a cyber-infrastructure in the following 
terms (WATERS, 2007a): “A cyberenvironment [cyber-infra-
structure] is an integrated system for automated collection, 
storage, retrieval, and analysis of data accessible by multiple 
parties through a Web portal. It includes various tools for 
real-time collaboration with other remotely based research-
ers and provides access to the monitoring information col-
lected by an observatory’s field facilities, as well as historical 
and other relevant data. Analytical (e.g., statistical), model-
ing, and visualization tools needed to conduct engineering 
analyses are provided within the system. An operational 
cyberenvironment also could include control and feedback 
systems for decision-making and management.”
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of the challenge itself; with then a discussion of some 
indicative lines of possible responses to the challenge. 
While composition of this White Paper has been 
prompted by the EO initiatives, our grand challenges 
have been evolving over the years, and will endure 
into the future, irrespective of the substantial current 
commitments to plans for realizing the ambitions of 
the Observatories. They therefore merit significant 
consideration as matters for further research in their 
own right.

Our thirteen challenges span the three domains of:

Science, predominantly so, and especially 
in respect of bringing together thinking and 
research from across the above disciplines, 
and indeed from beyond them (reaching 
notably into the biomedical sciences);

Policy, given the vital role of computational 
models in decision support for 
environmental stewardship; and

Society, in view of the great, contemporary 
debate over sustainable development of the 
biosphere.

Motivated by NSF’s EO initiatives, nevertheless, 
this White Paper is concerned to assess how those 
initiatives, with all their technical innovations in 
monitoring and sensors, as well as the prospective 
environmental cyber-infrastructure, have collectively: 
(i) created entirely novel and unexpected challenges; 
(ii) accelerated our approach to identifying and 
defining otherwise less swiftly emerging challenges; 
or (iii) significantly changed our opportunities for 
successfully responding to long-standing, recalcitrant 
challenges of the past several years, if not decades.
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Abstract

Four recommendations are made. They are intended 
to be generally indicative of the mix of strategies that 
might eventually be deployed for developing and 
implementing specific responses to specific challenges. 
Especially important in this will be the determined 
pursuit of more than a superficial appreciation 
and cultivation of the “people skill-set” required 
for the conduct of inter-disciplinary research. The 
recommendations of this White Paper are also intended 
to complement, not duplicate, recommended actions 
now emerging from the science and education plans of 
the EOs themselves. There are two recommendations of 
a more specific nature, however:

(i) The procedures of Observing System 
Simulation Experiments (OSSEs) should 
be applied sooner rather than later 
in designing the Observatories, and 
certainly before their construction; and

(ii) Having now brought together the 
community associated with this 
cross-cutting theme of environmental 
modeling, the fruits of that effort should 
not be allowed to dissipate through lack 
of support for its active promotion and 
management in the future.

Passive management, or management “by default”, 
in contrast, will not be a successful strategy for 
responding to what we are about to express as the 
grand challenges of the future for environmental 
modeling.
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How to Use this White Paper

The length of this White Paper may be both striking and off-putting to the reader. We offer the following advice, 
therefore, on how to make the most of the work invested in composing it.

The following Executive Summary largely comprises expression of the Grand Challenges and Recommendations 
(exactly as they appear in the main body of the Paper). These are linked together with just the minimum of logic 
necessary to convey an impression of the coherent whole.

A separate Synopsis, wherein the logic generating the coherent whole is provided in a more expansive, but 
nevertheless succint, form, is available for downloading at www.modeling.uga.edu/EOModels.

In the main body of the White Paper, we have placed lengthier background, illustrative, or exemplary material in 
boxes. This material is entirely integral to our justifications for singling out the various Challenges, or to indicating 
possible lines of responses to them. The purpose of setting such material aside in this manner, however, is to allow 
the reader to focus on following the overall logic of the White Paper, yet in more detail than in the Synopsis.

Finally, some words must be offered on the matter of what is understood as a model. Any logical “if”-“then”, or like, 
rule of (mental) reasoning could constitute a model. Belief Networks (BNs), for example, are formally organized 
stacks of such rules, realized in encoded, algorithmic form and manipulated on the computer for deducing 
outcomes from premises and assumptions. The distinction is a fine and subtle one, however, between where mental 
reasoning should cease, because of the danger of inconsistent and erroneous reasoning with too many such rules, 
and computations be commenced with a formal, numerical BN model. It is less subtle in the case of a differential 
equation as the model. Most, if not all, models would, or should, have begun in this way, through the rules of 
mental reasoning, before the arrival of differential calculus, or when puzzling for the very first time over how an 
algal cell grows and divides. In Environmental Science, we have come to equate a model with a set of differential 
equations, even though it is self evident that other forms of model, such as agent-based models, are now prominent 
objects of study and manipulation on the computer.

“Model”, as used herein, will signal anything that has passed beyond the fine and subtle line of mental reasoning 
into numerical manipulation on a computer. But while this implies that any form of model along the continuum 
from BNs to partial differential equations will come within the purview of this White Paper, it is acknowledged that 
models as sets of differential equations are the predominant form of model of concern and discussion. It could be 
argued, of course, that it should be the purpose of the Environmental Observatories and the environmental cyber-
infrastructure to propel the evolution of any model of an environmental system along this continuum towards 
differential equation forms.

Preface
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Executive Summary

MOTIVATION

The National Science Foundation (NSF) is supporting 
the development of three major Environmental 
Observatory (EO) initiatives, in the Ocean Sciences, 
Ecology, and Hydrology-cum-Environmental 
Engineering. Modeling, and the mathematical 
problems and methods it encompasses, provides 
a natural language for communication across the 
various disciplines contributing to the EOs. With this 
in mind, NSF supported a Workshop in May, 2006, in 
Tucson, Arizona2,  to begin assessing the views of the 
environmental modeling community on how it might 
collectively contribute to the success of the planned 
EOs. Design of the Workshop and overall design of this 
White Paper, duly informed by the proceedings of the 
Workshop, were the responsibility of a Committee of 
sixteen scientists and engineers, chaired by M Bruce 
Beck of the University of Georgia. The content of the 
White Paper has subsequently been developed from an 
extensive review of the contemporary literature. The 
result is a set of Grand Challenges — their origins, 
context, and possible lines of enquiry in response to 
them — for the future of research into Environmental 
Modeling.

CONTEXT

Environmental models, as we have come to know them 
over the past half century — as predominantly digital 
computer realizations of differential-equation solvers — 
are not going to “go away”, no matter how much some 
members of the Environmental Science community 
might wish it so (Pilkey and Pilkey-Jarvis, 2007). Great 
tension between empiricist and theorist is present in 
the heated contemporary debate over whether climate 
change influences hurricane intensity and vice versa 
(Mooney, 2007). Such is the stuff indeed of popular 
fiction (Crichton, 2004). Models are destined to become 
ever more complex, tending towards Virtual Realities. 
That progression, however, will not expunge uncertainty. 
In response to Moorcroft’s question (Moorcroft, 2006), 
we are still some distance, perhaps considerable indeed, 

2 Original material for the Workshop can be found at 
www.modeling.uga.edu/EOModels

from a “predictive science” of the biosphere. And people 
and policy-makers will use models, for good (NRC, 
2007) and ill: to shape environmental policy to the 
likes of their special interests, or repel, oppose, or delay 
unwanted policy, and in what are called scientifically 
untenable ways (Pilkey and Pilkey-Jarvis, 2007).

The environment, the biosphere, are just too complex for 
us to reason through the needs of Policy without models. 
Yet the more complex the models themselves become, 
paradoxically the less they may be trusted by the public, 
and the greater the surprise (to some) when models fail 
to account for what comes to pass in actuality, as they 
surely will. Climate models inevitably have incomplete 
structures and the various alternative models tend to 
have similar model structures. Consensus can seem 
stronger and more brightly illuminated than it ought, 
while significant unknowns and possibilities at the 
periphery of our understanding and vision are left to 
lurk in the shadows (Oppenheimer et al, 2007).

Some, examining the use of models for forecasting 
in the domain of Environmental Science, from their 
perspective in business and econometric forecasting, go 
so far as to charge this (Green and Armstrong, 2007):

The forecasts in the [2007 IPCC WG1] Report 
were not the outcome of scientific procedures. 
In effect, they were the opinions of scientists 
transformed by mathematics and obscured 
by complex writing. Research on forecasting 
has shown that experts’ predictions are not 
useful in situations involving uncertainty and 
complexity. We have been unable to identify 
any scientific forecasts of global warming. 
Claims that the Earth will get warmer have 
no more credence than saying that it will get 
colder.

Models, then, have joined the armory of Policy Foresight 
and Science, but as a two-edged sword: Models à la Mode 
—  the Promise and Peril of Integrated Environmental 
Modeling, as Clarke entitled his 2004 paper (Clarke, 
2004) for the Foresight and Governance Project of the 
Woodrow Wilson International Center for Scholars 
(Washington, DC).



x  Grand Challenges of the Future for Environmental Modeling

Executive Summary

THE CHALLENGES

Challenge # 0: Models and the Growth of Knowledge

Neither Environmental Science nor modeling has 
been the object of sustained enquiry by philosophers 
of science. If there has been any philosophy of 
environmental modeling, it has been one of: as 
computational capacity grows, so larger sets of 
equations may be solved simultaneously, hence — all 
else being equal — we shall have models that are ever 
better approximations of the truth of the matter. We 
ask, then, as a Grand Challenge arching over the 
entirety of this White Paper:

How does knowledge grow through the 
deliberate development, evaluation, and use 
of a computational model? What, in fact, 
should be a proper, sound philosophical 
basis for employing models, by design, in 
this context of basic scientific discovery; and 
how can the community of environmental 
modelers contribute to the construction of 
these philosophical foundations?

Challenge # 1: Global Issues of Science

Beyond the customary view of them as formal archives 
of constituent scientific hypotheses, models can be 
exploited in a more active manner:

Given the proposed Environmental 
Observatories (EOs), how can we 
deliberately design and employ models for 
the identification of important scientific 
questions in Environmental Science, with the 
accompanying potential for basic scientific 
discovery, in particular, at the interfaces 
between — and in the interstices amongst — 
the various disciplines within that Science?

Such questions of a global scientific nature, associated 
expressly with modeling, are defined not in the sense 
of “extending over the entire globe”, but in the sense 
that they can only be perceived and addressed when a 
(reasonably complex) model of the multi-disciplinary 
whole has been assembled from the mono-disciplinary, 
sub-model parts.

Challenge # 2: Role of Cyber-infrastructure in 
Addressing Global Issues

Delving more deeply into the computational mechanics 
of responding to Challenge # 1:

What kinds of software platforms within 
the environmental cyber-infrastructure 
will be necessary for supporting extensive, 
heuristic experimentation with a model’s 
structure, i.e., in facilitating experimental 
“rewiring” of its constituent hypotheses 
and their interconnections in the assembly 
of the whole, while the inter-disciplinary 
community of environmental scientists works 
at formulating and resolving core science 
questions in the interstices amongst the 
constituent disciplines?

How, for example, could the environmental cyber-
infrastructure — as the complement of the manual 
labors of the scientific analyst under Challenge # 1 — 
increasingly automate coverage of all the gaps amongst 
the disciplines, so that the potential discovery of 
significance is not overlooked? At the same time, how 
could it facilitate discrimination of the singularly key 
from the plethora of potentially spurious constituent 
hypotheses of which the multi-disciplinary whole of 
the model has been composed?

Challenge # 3: Universal Science Issues and Process 
Mechanisms

We know that variations across scales of observation 
and simulation are crucial to understanding and 
stewarding biodiversity and resilience of behavior in 
environmental systems:

Is there a unifying and uniquely distinctive 
approach to the use of models in exploring 
issues of scale, and cross-scale interactions, 
along each of the three dimensions of (i) time, 
(ii) space, and (iii) biogeochemistry, where 
this last manifests itself across scales from 
molecular biology up to all the chemical 
and biological species comprising whole 
ecosystems?
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Challenge # 4: Universal Science Issues of a Biological 
Nature

We may be forgiven for believing we live in a 
“biological age”. All of the “Recommended Immediate 
Research Investments” of the NRC’s 2001 Report on 
the Grand Challenges of Environmental Sciences (NRC, 
2001) relate to ecology. Hence:

What breakthroughs are needed in order 
to develop a more effective and complete 
paradigm of modeling biological processes — 
common to the ocean sciences as much as to 
terrestrial ecology or biological wastewater 
treatment — across all scales: from molecular 
biology to whole ecosystems, and including 
mimicking of the intelligence and metabolism 
of individuals in a population, their 
movement through an environment, and 
their interactions with other individuals, as a 
function of that intelligence and metabolism?

What novelty might then be unleashed by turning 
insights, acquired from working with the Individual 
Based Models of ecological and social systems, towards 
study of the predominant physics and differential-
equation models of Hydrology and the Ocean Sciences?

Challenge # 5: Applied Mathematics and Generic, 
Dynamical Systems Properties

While there is the scope for significant rewards to be 
returned from bringing together the various disciplines 
of the EOs through the devices of modeling, so the 
community of environmental modelers should be 
assiduous in ever looking outwards from the confines 
of their own collective discipline:

Building on the shoulders of the various 
mathematical theories of catastrophe, chaos, 
and complexity — but with the ambition 
to go beyond these — what new insights 
into the generic and fundamental dynamic 
properties of the behavior of systems can be 
obtained from the deliberately orchestrated 
in situ observation of the behavior of many 
specific environmental systems and the 
modeling thereof? In particular, how can 
the rich experience of elucidating these 
generic features from studies of whole 

ecosystems, indeed social-ecological systems, 
be productively interfaced with exploration 
of the novel properties of dynamical 
systems behavior yet to be discovered in 
the study of cellular metabolism, self-
repair, and self-replication? How can 
coordination of relevant research across 
all of the Environmental Observatories 
uniquely accelerate such development? 
Looking towards Challenge # 12, how can 
the community of model-builders in the 
Environmental Sciences best be organized so 
as to benefit as much as possible from novel 
developments in modeling in general, as they 
arise in, for example, the quite disparate 
disciplines of the biomedical sciences, 
social sciences, cognitive sciences, artificial 
intelligence, and artificial life?

How, in other words, might study of the behavior 
of specific environmental systems contribute to the 
development of generic theories about the behavior of 
dynamic systems?

Challenge # 6: Observatory Network Design and 
Operation

We know well enough the merits of Observing System 
Simulation Experiments (OSSEs). Their future use in 
the design of the EOs constitutes the rare exception of 
being a specific recommendation of this White Paper. 
But what of the subsequent stages in the life cycles of 
the Observatories, for which we ask:

Given a mature complex of environmental 
cyber-infrastructure and sensors, with — 
crucially — both an ever-alert monitoring 
and horizon-scanning facility and in-
depth capacity for real-time processing 
of information and production of 
knowledge, what kinds of novel, model-
based computational schemes of adaptive 
environmental sampling will be needed 
to enable rapid re-targeting of observing 
capacity for on-line probing of, and 
experimentation with, systems behavior?

The cyber-infrastructure of Mahinthakumar et al 
(2006) — inspired by the emergence of “Dynamic 
Data Driven Applications Systems” (DDDAS; Darema, 
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2005), and intended for threat-response in public, 
potable water supply systems — is one instance of the 
vision implied in answering such a question.

Challenge # 7: System Identification

This, which is to say, model calibration writ massively 
more richly, is pivotal in reconciling observation with 
theory. As a problem it has been long-standing and 
inadequately treated, and largely, but not entirely so, 
because of the historic absence of adequate streams 
of field data. The unresolved, but engaging, tension 
between empiricists and theorists in Mooney’s 2007 
popular-science book Storm World, provides every 
reason for why our community should be drawn to this 
challenge:

Under the expectation of massive 
expansion in the scope and volume of field 
observations generated by the Environmental 
Observatories coupled and integrated with 
the prospect of equally massive expansion in 
data processing and scientific visualization 
enabled by the future environmental 
cyber-infrastructure, what radically novel 
procedures and algorithms are needed to 
rectify the chronic, historical deficit of the 
past four decades in engaging complex 
models (VHOMs)3 systematically and 
successfully with field data for the purposes 
of learning and discovery and, thereby, 
enhancing the growth of environmental 
knowledge?

The environmental cyber-infrastructure holds out 
the promise of supporting the “tinkering paradigm” 
from Challenge # 2, of rewiring at will the constituent 
hypotheses assembled in the model. Scientific 
visualization and animation of the conceptual 
structure of the model — not its input or output data 
fields — can be expected to be a necessary part of 
realizing this intellectual support.

Challenge # 8: Predictive Science and Uncertainty

Taking a lead from the question that is the title to his 
paper (Moorcroft, 2006), “How Close Are We To a 

3  Very High Order Models.

Predictive Science of the Biosphere?”, this White Paper 
enquires:

Recognizing the inevitably flawed and 
uncertain conceptual foundations of 
many environmental models — while 
acknowledging the possibility of natural 
features of biological acclimation, even 
evolution, over a longer-term horizon, 
especially in response to the introduction of 
invasive species, and the high likelihood of 
continual adaptation in the behavior of many 
types of environmental system — how are 
structural error/uncertainty and structural 
change in these models to be identified, 
quantified, rectified, and accounted for (in 
the propagation of prediction errors and the 
making of decisions)? What new schemes of 
generating environmental foresight will be 
needed to cope with these challenges?

And to some considerable extent, the rejoinder to 
Moorcroft’s question can be found in Oppenheimer 
et al (2007), who in their turn question the value 
of premature consensus around climate change 
assessments, when in truth structural error/uncertainty 
in models seems both inevitable and to be guarded 
against.

Challenge # 9: Assimilating Data and Processing 
Information in Real-time

To be able to conduct the affairs of science and 
environmental engineering in “real-time” is 
recognized as a major opportunity for the community 
of environmental modelers. It is in keeping with 
the general quickening of the pace of things, as a 
manifestation of contemporary society. Under the EO 
initiatives, employing models and signal-processing 
algorithms in real time has all the thrill of conquering 
some final technical frontier:

In a world of increasing inter-connectedness 
and instantaneous communication, 
environmental vulnerability, and 
infrastructure systems fragility — subject 
in all probability to higher-amplitude 
extreme events, natural disasters, terrorist 
threats, and the like — how best can the 
expected innovations in cyber-infrastructure 
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and sensors under the Environmental 
Observatories programs be used in 
developing models and real-time data-
processing and forecasting algorithms: for 
the on-line detection of faults, failures, 
anomalies, and the weak signals portending 
imminent dislocations in system behavior; 
and for orchestrating/guiding rapid counter-
measures for enhancing and resuscitating/
reviving damaged system functioning, system 
survivability, and resilience?

Whereas Challenge # 6 asked how might models be 
used to inform the deployment and re-deployment 
of observing capacity in a built, operational EO, 
Challenge # 9 is now different. The challenge is one 
of reconstructing coherent, homogeneous fields of 
variables internal to the model: in particular, from 
all manner of heterogeneous observing platforms 
and devices; and, in principle, across the dimensions 
of time, space, and biogeochemistry. In this — as 
opposed to many of the preceding Challenges, 
wherein questions of a biological or ecological nature 
tend to predominate — studies tied to the relevant 
physical attributes of Hydrology and Oceanography 
are expected to continue to be in the vanguard of 
responses.

Challenge # 10: Management and Decision-support

In the measured prose of any report from the National 
Research Council, we find acknowledgment of a 
turning away from the prevailing view of models 
as “truth-generating machines” towards an outlook 
embracing other perspectives, most notably that of the 
model as a “tool”, such as a hammer or screwdriver, 
designed to fulfil, in particular, the predictive tasks 
of supporting regulatory, environmental decision-
making (NRC, 2007). In more colorful terms, van der 
Sluijs (2007) introduces the image of uncertainty as the 
“monster” at the interface between Science and Policy 
— monstrous in the sense of confusing what were 
previously kept strictly separate, i.e., the objectivity 
of Science and the subjectivity of value systems. This 
White Paper asks, therefore:

Under the prospect of lengthy and costly 
social negotiation and legal discourse over 
policy formation, wherein the placing of 
trust by various stakeholders in the models 

underpinning that policy is crucial, and 
where it has come to be recognized that the 
needs of model evaluation and peer review 
for conventional research science are different 
from those of regulatory science, what 
new methods of evaluating the alternative 
models designed to fulfil the predictive tasks 
of policy formation, decision-support, and 
management for environmental stewardship 
are urgently needed? How is the uncertainty 
associated with both the model and the 
decision-making context to be handled 
computationally and what new algorithmic 
and procedural developments will this 
warrant?

Challenge # 11: The Long View: Towards Sustainability 
of the Built Environment

Since the greatest debate of our times is the 
“sustainability debate”, with its significant 
implications for the design and operation 
of the built infrastructure at the interface 
between Man and Environment (most 
conspicuously so at the urban centers of 
socio-economic activity), how best should 
the Environmental Observatories be 
deployed and, more specifically, what kinds 
of models should be developed in order to 
promote a better strategic alignment of 
the study of urban metabolism with that 
of ecosystem services, all within the web of 
global biogeochemical cycles? How too, in 
the widest of possible terms, can innovations 
in information and communication 
technologies (ICT) — as realized in the 
environmental cyber-infrastructure — 
lead to tangible gains in reducing the 
unsustainability of current patterns of socio-
economic behavior?

It is easy to imagine mathematical programming and 
optimization to have been made for charting a course 
towards sustainability of the built environment: find 
those policies and technologies maximizing the rate 
of departure from unsustainability, subject to their 
satisfying the constraints of being {environmentally 
benign}, {economically feasible}, and {socially 
legitimate} — the triple bottom line. A fine line indeed 
separates what of human nature, preferences, and 
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values should be approximated and manipulated by a 
model and what should rightly remain in the space of 
public debate and democracy.

A simulated life-time of your simulated self with your 
personal/private preferences, undergoing forms of 
learning and negotiation with other simulated beings 
over aspirations for less unsustainable futures, is in 
prospect. Environmental modeling, and those who 
construct and use models, may increasingly be drawn 
into the unfamiliar territory of unusual and novel 
questions of ethics.

Challenge # 12: Community Structure

Looking across the Grand Challenges now expressed, 
each calls for investments in changing habits of mind 
as much as in equipment, computing, specialized field 
campaigns, and so on. We ask therefore:

What steps can the community of model-
builders in the Environmental Sciences take 
to pre-empt and reduce to a minimum the 
still readily apparent scope for re-inventing 
the “wheels” of modeling in contemporary 
research across the various disciplines of 
the EOs? How can our community best be 
organized so as to benefit as much as possible 
from novel developments in modeling in 
general, as they arise in, for example, the 
quite disparate disciplines of the biomedical 
sciences, social sciences, cognitive sciences, 
artificial intelligence, and artificial life? 
More broadly, how should the community 
of modelers best work with the community 
of primary field scientists to promote the 
development of models for basic scientific 
discovery at the interfaces amongst multiple 
disciplines? In the light of universal and ever-
more urgent calls for profound changes in 
the manner in which the next generation of 
scientists and engineers is educated, trained, 
and formed — all of which calls focus on 
“inter-disciplinarity” — what special role can 
models serve in meeting these needs?

RECOMMENDATIONS 

Two general and then two specific recommendations 
follow.

Recommendation # 1: Within Community 
Orchestration: Substance Not Form

Models, as the lingua franca for communicating 
amongst the Ocean Sciences, Ecology, Hydrology, 
and Environmental Engineering, are integral to our 
becoming inter-disciplinary.

Having brought a significant proportion 
of the community together, through a 
Workshop, and now — by virtue of the 
literature reviewed herein — this White 
Paper, it would be a missed opportunity 
not to provide the wherewithal for the 
continuing active maintenance, development, 
and scientific prosperity of the modeling 
community under the EO initiatives.

Inasmuch as not all of us have the talents for becoming 
an astronaut or brain surgeon, not everyone is suited 
to engaging fully and effectively in inter-disciplinary 
work, including when the object of enquiry is the 
development and application of models. Substance, 
as in recognizing and cultivating an appropriate set 
of “people skills”, may be more important than the 
organizational and administrative form of community 
orchestration.

Recommendation # 2: Cross-Community 
Communication: Attaining The Bigger Picture

The mathematical methods of modeling, like the 
software and algorithms of an environmental cyber-
infrastructure, can seem opaque and impenetrable 
when radical inter-disciplinarity and cross-
communication are called for, between the technical 
expert and the technically lay person, even when 
seemingly so little as the divide between the field 
science and the modeling must be bridged. The oft-
heard plea to “Let the data speak for themselves” is 
revealing of the attitudes of other professional scientists 
towards modeling and modelers.
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Given that modeling cannot proceed in a 
vacuum, detached from reality, case studies 
and case histories should be prepared and 
packaged in forms designed to serve the ever-
present need of the modeling community to 
build and maintain fruitful relationships 
with a variety of other communities — of 
philosophers, scientists, engineers, scholars, 
policy-makers, and the public — in 
developing the beginnings of responses to the 
Grand Challenges.

Environmental modeling has now a history of at least 
four decades to look back upon. This is long enough 
for us to discern the significance — or otherwise — of 
models: from their role in the philosophy of science 
and the growth of knowledge, to that in the successive 
and “jerky” exchanges between Science and Policy, 
such as those recorded in Dennis (2002) and Schertzer 
and Lam (2002). The very struggles within our own 
community, to attain that strategic sense of the “big 
picture”, should facilitate its articulation in a variety of 
more comprehensible forms for a variety of audiences. It 
is time to engage in such struggles.

Recommendation # 3: Models for Design/operation of 
the EOs

Given the maturity of Observing System 
Simulation Experiments (OSSEs), and their 
obvious potential role in the design of all the 
Environmental Observatories, investment 
in the work needed to respond to this facet 
of Challenge # 6 is recommended. In seeking 
progress on a variety of fronts, however, such 
investment should be directed beyond the 
pragmatic needs of EO design, for example: to 
furthering the social and professional aspects 
of bridging any divides between the field-
science and model-building communities; 
and to propelling OSSEs as much as possible 
beyond the current state of their art.

As generally understood in an OSSE, simulation is based 
on sets of differential equations as representations of 
the observed system’s behavior. Developing schemes 
of OSSEs founded upon the Individual Based Models 
(IBM) typical of Ecology appears to remain as yet an 
essentially untouched domain of research.

Recommendation # 4: Training the Next Generation

Having argued a case in favor of the special 
role of models, as the lingua franca of 
inter-disciplinary research, we recommend 
investigating the merits of complementary 
alternatives to vehicles such as NSF’s 
Integrated Graduate Education Research 
and Training (IGERT) schemes for the 
purpose of training the next generation of 
environmental modelers.

We would not want to pursue any alternative, however, 
without a systematic prior assessment of how young 
researchers mature to become leaders of inter-
disciplinary thinking.

CONCLUSION

Models need data for their evaluation. Essentially, 
we wish to know whether the model approximates 
well enough the behavior of the real thing. Imagining 
a future with High Volume High Quality (HVHQ) 
streams of data emanating from the Environmental 
Observatories is to look beyond a “nonlinear” 
break with the terms and conditions under which 
Environmental Modeling has labored in the past. 
Reconciling Very High Order Models (VHOMs) with 
the HVHQ data of the EOs, in the workspace of the 
future environmental cyber-infrastructure attuned to 
provoking new knowledge, has thus the air of a Grand 
Challenge that is primus inter pares.
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What we can all readily 
appreciate today about the 
behavior of our environment 
is its complexity: massive 

in its extent, yet impressively subtle and almost 
incomprehensibly intricate in its detail. We can reason 
with classical pencil and paper about the ramifications 
of man’s actions — disturbances and perturbations 
of the environment — up to a point. Beyond that, our 
reasoning over the past 40 years or so has become 
progressively more reliant on the development and 
application of computational models.

Indeed, the uniquely distinctive and essential role of a 
model is to allow us to grapple with such complexity. 
This is especially true in respect of being utterly 
systematic in connecting together multiple, constituent 
hypotheses — each of greater or lesser security — about 
the behavior of complex systems. While we would not 
use computational models to reason through elementary 
problems (except where extremely fast, unerring 
decisions must be made, as in automated, real-time 
control), the inner workings of models of complex 
systems must nevertheless ultimately be comprehended 
succinctly: by model developers, from a multiplicity 
of disciplines; by model users; policy makers; and by 
those scientifically lay parties affected by the decisions 
guided by models. The irony, then, is that in the end our 
essential understanding of the environment — albeit 
duly informed by models — may have to be expressible 
in just the ordinary terms to which pencil and the 
proverbial “back of an envelope” naturally confine us.1

No-one, of course, is conceiving of the Environmental 
Observatories (EOs) of the National Science Foundation 

1 The evidence from research on judgement and 
decision-making still errs towards the essential conclusion 
from Kahneman et al (1982): that a great deal of our reason-
ing and deciding is based on simple heuristics, which reduce 
what would otherwise be a process consuming vast computa-
tional resources and time in order to arrive at a “normatively 
correct solution” (Ayton, 2007). Essentially here, all involved 
parties must — somehow — come to judgements inter alia on 
the quality and reliability of models and their forecasts.

(NSF) in the absence of a significant role for models. This 
Paper addresses therefore the strategic question of what 
exactly should be the elements of that “significant role”: 
in support of the primary science to be conducted under 
the auspices of the EOs; in articulating the fruits of that 
science at the interfaces amongst environmental science, 
policy, stewardship, and the public; and in promoting 
substantial advances in the scope, sophistication, and 
practical relevance of environmental modeling, in 
particular, across all the disciplines of the EOs.

We begin with some prefatory considerations of 
philosophy and method. These are necessarily neither 
simple nor readily accessible to a general reader. But 
they are brief and their tone should not be read as that 
of the entirety of this White Paper.

1.1 Over-arching Challenge: Models and the 
Growth of Knowledge

We know that models can be used as succinct 
archives of knowledge, as instruments of prediction 
in support of making decisions and stewardship of 
the environment, or as devices for communicating 
scientific knowledge to a scientifically lay audience. 
But how, we must ask, might the development and 
application of models serve the purposes of basic 
scientific discovery and, therefore, the growth of 
knowledge? For the EOs are first and foremost science- 
and research-led programs.

Let us set down, then, an over-arching challenge for 
this entire Paper.

Challenge # 0:

How does knowledge grow through the 
deliberate development, evaluation, and use 
of a computational model? What, in fact, 
should be a proper, sound philosophical 
basis for employing models, by design, in this 
context of basic scientific discovery; and 
how can the community of environmental 
modelers contribute to the construction of 
these philosophical foundations?

Chapter 1: Why Models?
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In an article on interactive computing as a teaching 
aid, MacFarlane (1990) presented a three-element 
characterization of knowledge. According to the 
American philosopher Lewis these three elements are 
(as reported by MacFarlane):

(i) the given data;

(ii) a set of concepts; and

(iii) acts which interpret data in terms of 
concepts.

While we do not propose to enter here into any 
deep philosophical treatment of our subject nor 
suggest that we subscribe solely to Lewis’s particular 
philosophy of science — for those are in fact the 
subjects of the challenge — we note in passing that 
he was associated with the American pragmatist 
school of thought. Rather, these three pillars, and 
their inter-relationships, will help to structure 
our introduction of this Paper and therefore 
clarify the roles of modeling within the EOs.

Thus, for example, we can see that the impact of 
the EOs on the given data in this schema should be 
substantial and profound. Excellence in modeling 
cannot be achieved in the absence of first-class data for 
rigorous (whole) model testing and evaluation.

Just as profound, if not more so, should be the 
impact of the environmental cyber-infrastructure on 
mechanizing the set of concepts in computable form 
— although we should take care not to confuse the 
notion of a computational model entirely with the set 
of concepts or a theory. For models are a secondary 
science, in the sense of enabling organized assembly 
and encoding of the distilled knowledge emerging from 
the primary field sciences. But that distilled knowledge 
is not indisputable fact. It is an assembly of a host of 
constituent “atomistic” theoretical elements, each 
themselves reflecting individual hypotheses quarried 
from laboratory science or a particular field science, 
often crafted in disciplinary compartments without 
the benefit of the entire picture of the whole system 
necessarily in mind. The environmental systems 
we observe and study behave as indivisible wholes, 
however, so that a basic question becomes: when placed 
together in the organized structure of a computational 
model, which of the constituent hypotheses are 
adequate/inadequate, in terms of determining the 
performance of the whole; and how should the 
inadequate constituents be removed, modified, and 

re-introduced in more adequate form? The urgency of 
this matter can only but grow as mounts the number of 
constituent hypotheses upon which one wishes to draw 
(for a description of the real system’s behavior).

What will be the implications of these profoundly 
important advances — in the sensing technologies of 
the EOs and in the environmental cyber-infrastructure 
— for Lewis’s acts which interpret data in terms of 
concepts? Indeed, how does this interpretation actually 
come about? How does one, for example, reconcile a 
large-scale geophysical model of global deglaciation 
with (reconstructed) relative sea level observations 
at 392 sites spanning a period of some 15,000 years 
(Tushingham and Peltier, 1992)? More specifically, 
which constituents of the very large and very complex 
assembly of micro-scale theory is at fault when 
the model fails — as inevitably it does — to match 
the relatively macroscopic historical observations? 
Interpretation is a result of juggling with, and sifting 
through, a unique assortment of disparate facts and 
figures assembled by the individual, upon which some 
kind of order is eventually imposed. It is a subjective 
mental process.

In short, that there will be significant developments 
in the technical support necessary for engaging the 
model in a meaningful interpretation of the data, is by 
no means assured. News of advances in computational 
capacity is abundant (witness NSF, 2006); news of 
advances in the technology of instrumentation and 
remote sensing is commonplace (witness NSF, 2005); 
news of the increasing capacity of the brain to juggle 
with disparate facts and concepts is non-existent. In 
this resides arguably the greatest of opportunities to 
flow from the EOs and the oncoming environmental 
cyber-infrastructure for the future of environmental 
modeling — as in responding to what will be expressed 
subsequently  as our grand Challenge # 7.2

Lewis, of course, offered up his philosophical 
views long before computational models were in 
widespread use. His three-element characterization 
of how knowledge grows must be re-visited and 
now re-examined, especially in the light of our own 
personal experiences as modelers. For why should 
not those of us working at the “coal face” of modeling 
environmental systems reflect on how we have gone 
about our research over the past several decades, thus 
to contribute to building a contemporary perspective 

2 Throughout this Paper grand challenges will be de-
noted with this typeface.
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on the philosophical basis for the role of models in the 
advance of scientific knowledge? The paper of Beven 
(2002) is one such exemplar, albeit biased towards the 
physics of water flows in hydrology, as opposed to the 
biogeochemistry of ecology. The book by Petersen 
(2006) is a more substantial, deeper treatment, devoted 
to the physics and chemistry of climate science. There 
should be others. This is precisely the intent of our 
Challenge # 0, along with its appeal to philosophers of 
science to join us practitioners in responding to it.3

One of the most important developments of 
the past 10-15 years, at least in environmental 
engineering (water quality modeling), has been the 
introduction of comprehensive, multivariable, real-
time monitoring systems, i.e., systems providing 
high-frequency sampling of behavior along the three 
continua (dimensions) of (i) space, (ii) time, and (iii) 
biogeochemistry (improving capabilities greeted 
with enthusiasm in, for example, Kirchner et al, 
2004). Progress outwards from the origin of Figure 
1 is intended to encapsulate not only this increasing 
intensity of sampling — at more points in space, time, 
and biogeochemistry4 — but also its extent, as in 
observing at ever higher sampling frequencies over ever 
longer (unbroken) periods.

Once was the situation (point A in Figure 1) when little 
more than temperature, pH, conductivity, or dissolved 
oxygen concentration were readily measurable at 
isolated locations in a watershed. Today, automated 
observing capacity has been projected beyond these 
more customary physical and chemical segments of the 
biogeochemical continuum (in aquatic systems) into 
access to nutrients and macroscopic features of micro-
biology, for instance, chlorophyll-a and indicators of 
bacterial respirometry. Time-series such as those of 
Figure 2, therefore, reflect a sampling frequency of once 
every 15 minutes or so (in a record of over two months 
in extent), at six spatial locations no more than tens of 
meters apart, in the “sensor-hostile” environment of 
a biological wastewater treatment plant — point B in 
Figure 1, as it were.

3 And there are those so inclined, for example, Ravetz 
and Funtowicz (Funtowicz and Ravetz, 1990), Morton (Mor-
ton, 1993), and Oreskes (Oreskes et al, 1994).

4 We suppose this continuum to be gauged (loosely) 
in terms of the following illustrative sequence of sampling 
points, of increasing size of entity: OH- ion; enzyme; bacte-
rial cell; zooplankton; fish; and so on.

Progress such as this, doubtless hard won, has had two 
significant consequences. First, and in contrast to the 
preceding, prevailing thrust of modeling, it has become 
untenable to reject discrepancies between observed 
and estimated behavior as the result of inadequate data 
— in particular, in the case of very high-order models 
(VHOMs).5 The alternative inference has to be that 
either the constituent hypotheses drawn from primary 
science are not correct, or that they are correct, but 
have not been assembled in the correct organizational 
(multivariable) manner. Second — as the complement 
of the classical procedure of designing a laboratory 
experiment, wherein all variables are in fact kept 
invariant, except those describing the cause and effect 
of the archetypal single hypothesis relating one to 
the other — reconciling models with field data (our 
Challenge # 7) requires and enables, by contrast, the 
testing of an entire complex of multiple, interacting, 
elemental experiments, as a whole, as these would 
be encountered in situ. Indeed, the very innovation 
of the EOs can be expected to move the subject of 
Environmental Science still further away from a 
reliance primarily on the classical scientific paradigm 
of controlled experiments.

5  Where “high order” refers to the numbers of state 
variables, parameters, and/or rules in the model.

Figure 1
Three-dimensional volume — of time, space, and biogeochemistry — in 
which to gauge advances in the intensity, extent, and diversity of instrumen-
tation and sensor systems for observing the environment. For the purposes 
of illustration: (A) where we were 20-25 years ago, say, in respect of 
monitoring water quality; (B) contemporary capabilities. A similar figure, we 
note, has come to be known as “Maidment’s Data Cube”.
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Time-series observations of water quality (orthophosphate-P, ammonia-N, total oxidized nitrogen, nitrate-N, total organic carbon, and dissolved oxygen concentrations) in the 
biological treatment unit of the Athens, Georgia, Water Pollution Control Facility # 2, during Winter, 1998. These are part of a data base collected through the Environmental 
Process Control Laboratory, University of Georgia, a mobile platform for real-time monitoring of water quality in various aquatic environments. They are accessible and freely 
available, along with other like data bases, at www.modeling.uga.edu/gwis.

Figure 2
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Lewis’s three-element characterization of knowledge 
growth may therefore no longer suffice for guidance. 
MacFarlane himself asserted long enough ago that 
(MacFarlane, 1990):

Modern scientists and engineers no longer 
work only in terms of theory and experiment. 
Their attack on the problems of describing 
Nature and on creating useful artefacts now 
has three fronts:

•	 experiment
•	 theory
•	 computation

Computation is opening up vast new 
continents in Popper’s World 3.

To build upon this, and thereby to define briefly the 
contents of Popper’s three “Worlds” (Popper, 1972), 
our philosophically naïve expectations of these three 
elements should be these:

Experiment: Designed to probe the nature of 
Popper’s World 1, which is the physical world, 
or world of physical states;

Theory: A conjecture drawn from Popper’s 
World 2, that being the mental world, or the 
world of mental states; and

Computation: A conjecture drawn from 
assimilation of the (unexpected) consequences 
of computational simulation, i.e., from 
Popper’s World 3, the world of all possible 
objects of thought, existing outside and 
independent of any individual. Presumably, 
this would be especially the case for 
computationally derived “consequences”, 
which practically could not have been 
reasoned about in Popper’s World 2 (because 
what is being simulated is simply far too 
complex for unerring, mental reasoning 
alone).

Given these, the possibility of three kinds of “acts” is 
opened up:

Acts # 1: The familiar acts of reconciling 
computation (computational models) — 
not theory itself — with the outcomes of 
experiments and experimental/observing 
experience;

Acts # 2: Those which Lewis must originally 
have had in mind, i.e., acts reconciling theory 
with experiment;

Acts # 3: Which enfold the matter of 
reconciling computational models with 
theory, where this now (presumably) can 
work in both ways, i.e., that computational 
models can be improved so as to mimic theory 
better (albeit never completely), while theory 
can be adapted so as to reflect better the 
consequences of computation — could we say 
“discoveries” even? — hence to provoke new 
forms of experimentation.

In other words, understanding — that is, assimilation 
of material into an appropriate mental structure (or 
mental model) — may derive increasingly from the 
belief that the virtual computational world (Popper’s 
World 3) has been founded upon true and correctly 
applied theories at the micro-scale and does not 
generate broad, macroscopic, qualitative predictions 
in obvious, absurd discord with whatever can be 
observed of the real thing in the physical world 
(Popper’s World 1). This would be the embodiment of 
Acts # 1. In contrast, it seems difficult to credit Acts 
# 3 with the power to fuel a growth in knowledge 
through reconciling the computed macro-scale 
consequences of micro-scale theory with that self-
same micro-scale theory. After all, the entire notion 
of founding the growth of knowledge on the classical 
basis of reconciling the given data with the set of 
concepts (Acts # 2) rests itself upon maximizing the 
intellectual “distance” between the two sources of 
experience of the behavior of the world.

How exactly, then, should we go about assessing 
the scientific security of the constituent theories 
assembled in a VHOM? And given the unending 
nature of the quest, as ever higher-performance 
computing within the cyber-infrastructure propels 
these VHOMs towards a variety of virtual realities, 
what exactly are the distinctive challenges of 
developing and deploying such models over the next 
5-10 years? For this should go beyond the challenge 
of encoding in these virtual realities yet more of the 
purported micro-scale behavior of the environment, 
should it not?

The need for our Challenge # 0 to have the strongest 
possible appeal to philosophers of science should 
now be obvious, not least so given the puzzles and 
puzzlements exposed in our conjectures on the roles 
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of models in Popper’s three Worlds. Perhaps the 
nature of Acts # 3 has been incorrectly expressed 
above, so that this misleadingly suggests self-delusion 
rather than the wellspring of new questions about 
basic Environmental Science.

We shall return to these more philosophical 
considerations on several occasions. First, however, 
we need to set up a methodological framework for 
developing and applying environmental models. 
Having examined briefly how models fit into the 
broader philosophical picture underpinning the 
science of the EOs, therefore, our goal now is to 
introduce a helpful organizing framework for 
thinking about modeling as a subject in its own right.

1.2 Developing and Applying Models:  
The {u, M, y} Triplet

Let us assume the scope of model building can be 
succinctly defined by the triplet of the observed inputs 
(u), model (M), and observed outputs (y), and that 
the attaching tasks are those of the mathematical 
textbook: given two out of the three unknowns, 
find the third. Thus, in subsequent parts of this 
Paper we shall need to enquire into the nature of the 
grand challenges associated with the three principal 
computational and algorithmic questions of:

(i) Given u and y, find M. This we shall refer 
to as system identification, i.e., principally 
Acts #1 of Lewis’s pragmatic school of 
thought on the growth of knowledge, 
under which falls the task of choosing 
the contents of u and y so as to maximize 
the “identifiability” of M — a matter of 
the design of experiments and sensor 
networks;

(ii) Given M and u, find y. The problems of 
forecasting, and scenario and foresight 
generation; and

(iii) Given M and desired, feared, and/or 
threatened y, find u. The problems of 
control, management, decision-support, 
and policy formulation.

From (i) emerges a fourth question, of course, which is:

(iv) How well does M approximate the real 
thing, and what are we going to do in 
respect of the other two questions ((ii) and 
(iii)) given there is never such a match, 
i.e., that there is more or less substantial 
uncertainty to be dealt with?

In large part the ordering of these succinct questions 
— (i), (ii), and (iii) — reflects the organization of this 
White Paper (set out in Section 1.3 below). But we 
must note briefly here certain other features of model-
building important to its role within the context of the 
EOs.

Abstracted, as they are, the preceding tasks and 
questions clearly transcend the confines of study in any 
single EO. Model-building, in that sense, is generic. 
Significantly, the process has the power to promote 
and nurture links across disciplines, something so self-
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evidently vital in almost all contemporary discussions 
of how we ought to be organizing scientific enquiry and 
educating and training the next generation of scientists 
(for example, NRC, 2001, 2004; NSF, 2006).

But a moment’s thought is needed to appreciate 
how terrestrial ecology interacts with the hydrology 
and aquatic ecology of a watershed and the built 
environments of cities, and they in turn with 
estuarine and coastal ecosystems, hence the open 
oceans. In this “whole” system, significant elements 
of all the EOs are encompassed. Consider, then, 
the image of a model — for that whole — as the 
vessel into which the contributions from all of those 
relevant disciplines must be poured in a consistent 
and compatible manner. The systematic character 
of model-building, together with the discipline 
imposed by the formal algorithmic and mathematical 
logic of the models themselves, can at the least 
assist in eliminating daft ideas — constituent 
hypotheses from different disciplines that do not 
mesh logically together — sooner rather than later. 
From the demands of such consistency derives the 
metaphor of models affording us a lingua franca 
for communicating across disciplines. And in this, 
it is the process (of model building) that may be as 
important as the product (the model itself), if not 
more so.

There is something less obvious, but equally as 
important, about the generic role of computational 
model-building as a cross-cutting exercise. Inasmuch as 
this can support links amongst scientific disciplines, so 
it can be turned to illuminating gaps in our knowledge 
in the interstices amongst disciplines. It is not at all 
self-evident, however, whether and how the capacities 
of all three EOs should be orchestrated collectively 
— through the development of models — in order to 
support studies at the intersections amongst issues such 
as biodiversity, invasive species, pathogen adaptation, 
ecosystems, and climate change, for example.

1.3 Organization: Science, Policy, and Society

Oriented thus towards Science, models might best be 
viewed as archives of hypotheses about the nature of 
an environmental system’s behavior, with the word “ar-
chive” suggesting a degree of consolidation and agree-
ment regarding the hypotheses chosen for archiving. 
Thinking of models designed (expressly) as vehicles for 
the discovery of our ignorance evokes something of a 
complementary idea: that the model can fulfil the task 
of detecting anomalous or previously undetected fea-
tures in the system’s behavior. Guided by such revealed 
anomalies, models may be deployed as experimental 
facilities — as generators of novel hypotheses — within 
which to speculate about possible explanations of these 
anomalies, as well as to prompt questions of an essen-
tially scientific nature at the interstices between the dis-
ciplines of the EOs. In assembling our review, we have 
paid special attention to connections across the vastly 
different scales of molecular biology and Earth Systems 
Analysis. And in keeping with the times, we have been 
especially concerned to create the future potential to 
elucidate novel, general ideas about dynamical sys-
tems behavior, at the intersection of such superficially 
diverse disciplines as the biomedical sciences, ecology, 
social sciences, cognitive sciences, artificial intelli-
gence, and artificial life. All these are tracked across 
Challenges # 1 through # 8 in Chapter 2 of Part II of 
this White Paper.6

It is not our view, not surprisingly, that the 
development and application of models should follow 
in the wake of any of the EOs coming to fruition, 
without their design and construction having been 
informed by current research in environmental 
modeling. Inasmuch as one of the greatest of our 
challenges relates to the role of models in reconciling 
theory with observation, equally so models can be used 
to design experiments, and to redeploy field observing 
equipment as contingencies arise. Much, nevertheless, 
is expected of models. A significant portion of Chapter 
2 of the Paper is devoted, therefore, to the culmination 
of this expectation (in Challenge # 8): of environmental 
science becoming a “predictive science”; and of how 
such a science must deal with uncertainty.

6  Each Challenge is presented in an identical manner. 
First its context, foundations, and justification in the contem-
porary research scene are set out as preamble; the Challenge 
is then expressed; and thereafter possible lines of response to 
the Challenge are indicated.
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As Science starts to be turned towards the needs of 
Policy and practice, so our White Paper travels over 
the challenges of assimilating data. These will be data 
fully anticipated to be heading towards analysts and 
the environmental cyber-infrastructure in ever greater 
volumes at ever higher speeds, calling thus for their 
assimilation in the ever shorter-term, even in real-
time. Challenge # 9 merits its own chapter, therefore: 
Chapter 3 on Science and Engineering in “Real Time”.

Chapter 4 of Part II covers the final triplet of 
Challenges # 10 through # 12. These are in turn Policy- 
and community-oriented. They depart from the focus 
on the “here and now” of Chapter 3 towards the use of 
models for exploring longer-term futures in support 
of decision-making, management, and environmental 
stewardship. Sustainability, and herein the development 
and deployment of associated environmental models, 
is clearly an issue embedded in the huge complexities 
of the interfaces amongst Science, Policy, and Society 
(Challenge # 11). Our discussion of it precedes our 
closing challenge (Challenge # 12), which appropriately 
we turn back on to our own community: how shall we 
begin to think of organizing our habits of work, and 
of educating and training our successors, in order to 
respond to all of the above grand challenges?

Part III of the White Paper is devoted to our 
Recommendations (Chapter 5) and Conclusions 
(Chapter 6).



PART II: 
THE CHALLENGES
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2.1 Global Issues of Science

By global science questions associated with modeling, 
we mean issues defined not in the sense of “extending 
over the entire globe”, but defined in the sense that 
they can only be perceived and addressed when a 
(reasonably complex) model of the whole has been 
assembled. In thinking about the growth of knowledge, 
our over-arching Challenge # 0 (in Chapter 1.1), the 
significance and number of these issues look set to 
mount. We assert that the primary field sciences 
cannot as readily — as model-building and the use of 
models — illuminate and articulate these questions, 
challenges, and properties emerging from the joined-
up thinking typical of our attempts at attaining the 
“big picture”.

Challenge # 1:

Given the proposed Environmental 
Observatories (EOs), how can we 
deliberately design and employ models for 
the identification of important scientific 
questions in Environmental Science, with the 
accompanying potential for basic scientific 
discovery, in particular, at the interfaces 
between — and in the interstices amongst — 
the various disciplines within that Science?

Significant recent reports and surveys by the National 
Science Foundation (NSF) and National Research 
Council (NRC), amongst others, speak of the growing 
prominence of models and modeling in basic, scientific 
discovery. Here, for instance, is how a report from a 
blue-ribbon panel on Simulation-Based Engineering 
Science put it — echoing MacFarlane’s earlier remarks 
(NSF, 2006):

Computer simulation represents an extension 
of theoretical science in that it is based on 
mathematical models. Such models attempt 
to characterize the physical predictions or 
consequences of scientific theories. Simulation 
can be much more, however. For example, it 
can be used to explore new theories and to 
design new experiments to test these theories.

Further echoes can be found reverberating around a 
recent review paper on the role of individual-based 
models (IBMs) in integrating up from the micro-scale 
of an individual organism to the macro-scale of whole 
ecosystems (Grimm et al, 2005):

 
This approach may change our whole 
notion of scientific theory, which until now 
has been based on the theories of physics. 
Theories of complex systems may never be 
reducible to simple analytical equations, but 
are more likely to be sets of conceptually 
simple mechanisms (e.g., Darwinian natural 
selection) that produce different dynamics and 
outcomes in different contexts. POM [Pattern-
Oriented Modeling] thus may lead us to an 
algorithmic, rather than analytical approach 
to theory.

In a special supplement to the journal Nature 
(published on the threshold of the new millennium in 
December, 1999), Schellnhuber contributed a paper 
entitled “‘Earth System’ Analysis and the Second 
Copernican Revolution” (Schellnhuber, 1999). Its 
synopsis runs as follows:

Optical magnification instruments once 
brought about the Copernican revolution 
that put the Earth in its correct astrophysical 
context. Sophisticated information-
compression techniques including simulation 
modelling are now ushering in a second 
‘Copernican’ revolution.

Schellnhuber goes on to make a particular point of 
the role of models — of an intermediate complexity 
(neither over-simplified nor overly sophisticated), 
drawn from the subject of Earth Systems Analysis — 
in articulating his vision of this second Copernican 
revolution (Schellnhuber, 1999). We must conclude that 
he has basic, core, curiosity-driven scientific discovery 
in mind, for in a subsequent paper (Schellnhuber et al, 
2005) we find this:

[D]iscovery of maximum reduction in 
stratospheric ozone came as a total surprise. 
This phenomenon was not predicted by 
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“traditional” science; it occurred in a section 
of the atmosphere furthest from the regions 
of CFC releases to the atmosphere and where 
ozone loss was thought to be impossible. The 
Earth System science expected to emerge 
from the second Copernican Revolution will 
have to do better by predicting at least the 
possibility of future “ozone holes” — that is, 
major disruptions of some planetary modes of 
operation.

When Moorcroft asks “How close are we to a predictive 
science of the biosphere?”, he proceeds to define 
computational models as providing the foundations of 
scientific understanding (Moorcroft, 2006):

[L]ike many areas of climate change 
science, but unlike most areas of ecology, 
understanding of biosphere-atmosphere 
interactions fundamentally relies on the 
predictions of large, complex models whose 
parameters are too difficult to measure and 
that make predictions at scales far larger than 
we are typically able to make measurements. 
[Emphasis added]

Yet nowhere in any of these papers is a sound 
philosophical case made for articulating the role of 
computational models in basic discovery and the 
growth of scientific knowledge, hence precisely our 
Challenge # 0.

Responding to Challenge # 1 rests significantly on 
the way in which the community of environmental 
modelers can likewise respond to Challenge # 0, but 
not entirely so. Some basic scientific problems and 
questions, perhaps many, will reside as yet undisclosed 
in the interstices between the disciplines contributing 
to the EOs.

Working at the Interstices

Take, for example, the broad subject area of coastal 
ocean dynamics and ecosystems, one of seven research 
themes and opportunities of strategic importance in 
the Ocean Observatories Initiative (ORION Executive 
Steering Committee, 2005). Suppose our interest is 
in understanding the occurrence of harmful algal 
blooms (HABs) of the Phaeocystis species and their 
many distorting and unwelcome effects (Veldhuis and 
Wassmann, 2005). What disparate blocks of knowledge 
might have to be pushed up against each other in full 

pursuit of this interest? What heterogeneous, mono-
disciplinary sub-models might have to be poured in a 
consistent manner into the holds of our metaphorical 
vessel of the model of the multi-disciplinary whole? 
How can the practicalities of this be employed in 
supporting the creativity of both asking novel, basic 
scientific questions and of wringing the elegance of a 
more coherent theoretical whole out of the incoherent 
parts?

From a global perspective, and therefore certainly 
at a macroscopic scale, transport of materials and 
organisms (such as larvae) across the coastal ocean 
margin exerts a dominant control over major, global 
chemical cycles, most obviously so at the interface 
between the terrestrial and oceanic realms (ORION 
Executive Steering Committee, 2005). Significant 
material transfers are also occurring, however, across 
the interface between atmosphere and ocean, including 
the invasion of CO2; and the resulting acidification may 
interfere with biogenic calcification, possibly associated 
with organisms linked through an ecosystem to the 
Phaeocystis algal species.

At an intermediate scale — let us say, meso-scale — 
one (if not several) blocks of knowledge regarding 
the hydrodynamics of the coastal margin will have to 
be brought together: on stratification, as a function 
of freshwater inputs, including from groundwater 
through the coastal ocean bed; on ocean fronts, and 
specific filaments and jets thereof, whose movement 
and meandering across the margin may be guided 
by specific bottom topography; and on regimes of 
sediment erosion, transport, and deposition. These 
factors influence the occurrence of hypoxia events 
(another block of knowledge), which in turn influence 
marine biogeochemical processes, such as the 
removal of biologically available nitrogen through 
denitrification. Such factors also induce patchworks 
of unique habitats (yet another block of knowledge) 
capable of dominating the structure and behavior 
of these same biogeochemical processes (ORION 
Executive Steering Committee, 2005).

Coming down to a literally microscopic scale, without 
losing sight of entire ecosystems at the meso-scale, still 
other blocks of possibly ill–fitting knowledge must 
be dove-tailed into the whole: on the physiological, 
behavioral, and morphological characteristics of 
individual species. Understanding polymorphism 
amongst the six currently identified Phaeocystis 
species of algae, manifested as free-living single-cell 
species, as opposed to gelatinous, colonial species, 
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is crucial. For it affects variously the efficiency of 
cell/colony growth; virus penetration of cells and 
therefore their mortality; escape from ingestion by 
predators; exudation of predator-repellent chemicals; 
and the scavenging of bacteria and viruses from the 
water column, as particulate fragments are generated 
during disintegration of the colonies (Veldhuis and 
Wassmann, 2005).

Alternatively, turning the course of this 
argument landward, as it were, Box 1 examines 
the possible gaps existing at various scales and 
amongst the many constituent disciplines and 
models germane to studies in uncoupling the 
nutrient and water metabolisms of cities.

For problems such as these, do we have a model, or a 
suite of models, capable of addressing the functioning 
of such complex systems spanning so many different 
disciplines and scales and, most importantly, 
illuminating thereby interesting, novel, basic scientific 
questions at the interstices amongst these disciplines 
and scales?

As the sceptic would say, “there is nothing new under 
the sun”, of course. After all, Integrated Assessment 
Models (IAMs) have been available for some time 
now (Risbey et al, 1996; Schröter et al, 2005; Letcher 
et al, 2007), as have multi-media (air-water-soil) 
models (Efroymson and Murphy, 2001; Babendreier 
and Castleton, 2005), while Bayesian (or Belief) 
Networks can also be seen as a systematic framework 
for pinning together constituent knowledge bases 
and sub-models of quite eclectic origins (Borsuk 
et al, 2004). All, however, are turned not to the 
purpose of generating new hypotheses, but to that of 
answering questions of policy and decision-making: 
of discriminating reliably between those hazardous 
waste streams that could safely be released to the 
environment and those that could not (Babendreier 
and Castleton, 2005); of the vulnerability of 
supplies of ecosystem services across Europe in the 
face of climate change (Schröter et al, 2005); or of 
determining a Total Maximum Daily Load (TMDL) 
of nitrogen discharges in order to subdue the extent 
of eutrophication in an estuary (Borsuk et al, 2004).

To many readers of this Paper at least one of the gaps 
in the above (and in Box 1) will not seem as such at 
all and will doubtless have been the subject of some 
investigation, possibly with the use of a computational 
model. This is not the point. Rather, the question is 
whether and how the growing potential and scope of 

environmental modeling, underpinned by the expected 
advances in environmental cyber-infrastucture and 
sensors, can be used deliberately to arrange and 
manipulate cross-disciplinary knowledge in a way 
that provokes or prompts the kind of basic scientific 
questioning that Schellnhuber and colleagues expect of 
the second Copernican revolution — and more readily 
so than would otherwise be the case.

When a model is constructed, certain pieces of the 
primary science bases are presumed known and 
included in explicit mathematical form, to which we 
shall refer as the {presumed known}. This implies a 
complement, of that which is acknowledged as not 
known — the {acknowledged unknown} — and 
therefore not included in the model’s structure, except 
typically under the lumped, and largely conceptual, 
stochastic processes customarily referred to as the 
system and/or observation noises. This, then, is part 
of the challenge. What methods are available, or are 
conceivable, for systematic probing and exploration 
of the {acknowledged unknown}, in particular, those 
portions of it associated with the interfaces between 
disciplinary sub-models?

The conventional view of models as archives for 
passively consolidating the “known” must be 
complemented by the view of models as vehicles for 
actively probing the “unknown”. That is exactly what is 
called for in Challenge # 1.

We recognize full well, nevertheless, that the 
occurrence of important insights and the formation 
of profound questions cannot be reduced to formal 
logic alone in any deliberate design and deployment of 
models, since this occurrence is almost always a strong 
function of what we acknowledge as “serendipity”. 
When the procedure of Regionalized Sensitivity 
Analysis (RSA) was first proposed (Young et al, 1978), 
it was described as a computational, model-based 
scheme for hypothesis generation — suggestive indeed 
of things to be sought in the {acknowledged unknown}. 
In practice, it is better understood as a scheme for 
discriminating key from redundant hypotheses, where 
the skill of the analyst resides in carefully assembling 
in the {presumed known} as many such candidate 
hypotheses as may be thought remotely relevant to the 
issues at hand, albeit under gross uncertainty.

Our challenge still stands, therefore, although with 
now an inkling of one possible avenue for developing a 
response to it; yet an avenue capable of fully exploiting 
the future cyber-infrastructure and the VHOMs 
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BOX 1 BOX 1

Uncoupling the Nutrient and Water Metabolisms of Cities

Problems Across The Scales

At one scale (the city) food and water enter the city in separate fl ows; under the modern sewage 
treatment paradigm of the Global North, they exit the city comprehensively mixed and destined for 
the aquatic environment. Those nutrients entrained into the water effl ux should not be headed for 
the aquatic environment. How can this be halted, by what adaptations and re-engineering of the city’s 
water infrastructure? How does mass collective human metabolism infl uence the fl uxes of nutrients 
through the city, including the entrainment of pharmaceutical residues and pathogens, as a function 
of nutritional requirements, dietary preferences, and public health considerations?

At another, larger scale (the watershed) the city and its water infrastructure, constituting Integrated 
Urban Water Management (IUWM), are embedded within schemes of Integrated Water Resources 
Management (IWRM) across the watershed, and the practices of both (IUWM and IWRM) interact — 
for ill, or good — with the provision of the region’s ecological services.

At yet another scale (the globe) 70-80% of Man’s appropriation of the Earth’s freshwater has to do 
with the production of food; vast quantities of water, as much as signifi cant amounts of nutrients, are 
“burned up” in the process. In the global production, transport, trading, and consumption of food-
stuffs, these constituents embodied in the food participate in a global cycling of materials, largely “vir-
tual” in the case of water (Allan, 2003; SIWI-IWMI, 2004), literal in the case of the nutrients. Looked 
at globally, the quality of agricultural soils in food-producing parts of the world is being stressed, if 
not degraded, while eutrophication is occurring in the coastal ecosystems “downstream” of the cities 
in food importing countries (Grote et al, 2005), with possibly wider consequences for harmful algal 
blooms (HABs) and the evolution of marine ecosystems more generally (Jackson et al, 2001).

At still another scale (the local, and the very personal) to what extent would a re-plumbing of house-
holds in the Global North — to accommodate the broad-scale substitution of urine-separating devices 
for current toilet designs — allow us to uncouple the water and nutrient fl uxes in the metabolism of 
a city? Would such a technological “solution” be suffi ciently socially legitimate? And how might we 
judge the sustainability of this infrastructure change over the span of generations?

Interstices and Models

There are signifi cant gaps amongst the disciplines and models that might be assembled to address 
such a “mess” of a problem with its many questions, as we shall see later (Challenge # 11).

First, it is not common to link analyses of the urban water infrastructure of potable water supply 
upstream of the household to those of the wastewater infrastructure downstream thereof, and little 
or no accompanying systematic account is taken of the role of collective human agency within a 
household (such as dietary preferences and health-care status) in connecting the two.

Second, we do not know how to assess individual items of technology, such as the urine-separating 
device, or even the entire web of technologies comprising water infrastructure, on the basis of their 
roles in the interaction between the city’s metabolism and global material cycles (notably the N cycle) 
— yet we can see this would be hard to achieve without a complex model.

Third and likewise, we do not have any clear, quantitative expression of the relationship between the 
urban water and nutrient metabolisms and the ecosystem services deriving from the
surrounding watershed.

Fourth, but a few pioneering studies have examined the interactions between groundwater and urban 
water infrastructure, let alone the feedbacks between groundwater extraction, water tables, city land 
subsidence, and vulnerability to fl ooding (Howard and Gelo, 2003).

Fifth, and last, we have only recently begun to conceive of the microbial ecosystems of biological 
wastewater treatment as microcosms for studies in generating novel, generic insights into the 
behavior of dynamical systems — such as metabolism, self-repair, self-replication, and their 
relationship with the notion of ecological resilience — and infrastructure design.
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enabled within it. For merely integrating the various 
blocks of knowledge, such as those apparent in Box 
1, or in the example of coastal ocean dynamics and 
ecosystems, is not a trivial technical matter. For 
instance, in developing supporting computational work 
for the scenarios element of the recently completed 
Millennium Ecosystem Assessment (Carpenter and 
Folke, 2006; www.MAweb.org), an inability to link the 
models from the disparate components comprising the 
necessary inter-disciplinary synthesis was indeed an 
insuperable, technical barrier to progress.7 Removing 
this kind of barrier presents us thus with a challenge 
in itself, and one closely bound to innovations in the 
environmental cyber-infrastructure.

7  Schröter et al (2005) confirm this, albeit indirectly. 
Their work amounts essentially to a bundle of climate and 
societal scenarios acting as input forcing functions for a 
collection of more or less complex, but independent, sector 
models.

2.2 Role of Cyber-infrastructure in Addressing 
Global Issues

The NSF Blue-ribbon Panel on Cyberinfrastructure 
held out this promise (NSF, 2003):

[A] new age has dawned in scientific and 
engineering research, pushed by continuing 
progress in computing, information, and 
communication technology, and pulled 
by the expanding complexity, scope, and 
scale of today’s challenges. The capacity 
of this technology has crossed thresholds 
that now make possible a comprehensive 
“cyberinfrastructure” on which to build new 
types of scientific and engineering knowledge 
environments and organizations to pursue 
research in new ways and with increased 
efficiency.

For our present purposes, the Engineering Research 
Plan for the WATERS Network defines a cyber-
infrastructure in the following terms (WATERS, 
2007a):

A cyberenvironment [cyber-infrastructure] 
is an integrated system for automated 
collection, storage, retrieval, and analysis of 
data accessible by multiple parties through 
a Web portal. It includes various tools for 
real-time collaboration with other remotely 
based researchers and provides access to 
the monitoring information collected by 
an observatory’s field facilities, as well as 
historical and other relevant data. Analytical 
(e.g., statistical), modeling, and visualization 
tools needed to conduct engineering 
analyses are provided within the system. An 
operational cyberenvironment also could 
include control and feedback systems for 
decision-making and management.

Seamless integration and consistency of functions 
should be of the essence.

Models and an Environmental Cyber-infrastructure

At the May (2006) Workshop in Tucson, Arizona, a 
substantial amount of time was devoted to assessing 
the role of the cyber-infrastructure in enhancing the 
functions of models, in particular, in the context of the 
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EOs. Inasmuch as a snapshot can be taken of such a 
rapidly evolving field, our conclusions were broadly as 
follows.

First, the cyber-infrastructure would support:

(i) Integration of the heterogeneous data 
bases and data streams, from all manner 
of sensing platforms (satellite, buoy, flux 
tower, and so on) and devices (mobile, 
DNA micro-array, and so forth) far better 
than previously, and more completely, 
into a coherent, transparent whole 
comprising (yet to be) standardized 
components.

Nowhere more so are data heterogeneous than in 
Ecology, argue Jones et al (2006). In a refreshingly 
candid survey, they note that: (a) current spreadsheets 
do not provide the tools to promote good data 
management; (b) the alternative of data warehouses 
may well not succeed, since no reward system is in 
place for recognizing contributions made by sharing 
data — indeed, the absence of an appropriate system of 
rewards is “[p]erhaps the most pervasive cultural factor 
stalling access to digital data”; (c) retirement, career 
changes, and death of the original investigator can 
have a dramatic impact on the availability of metadata 
— information used to document and interpret data — 
and therefore the utility of the data themselves; and (d) 
the prevalent model for funding of scientific research 
overlooks the need for long-term preservation of data, 
the costs of which data curation are substantial ($10M 
per annum, even in best of circumstances, for the 
National Center for Biotechnology Information). Their 
conclusion is thus inevitable (Jones et al, 2006):

It is false economy, and poor scientific 
practice, not to ensure that the data are 
present and useful to all users in the future.

It is no surprise that substantial resources are being 
devoted to addressing this widespread concern. The 
Consortium of Universities for the Advancement of 
Hydrologic Science, Inc (CUAHSI), supported by 
NSF, has been developing a Hydrologic Information 
System (HIS), presently at the stage where Horsburgh 
et al (2009) have announced their standard method of 
publishing environmental and water resources point 
observations data as providing:

[A] framework in which data of different types 
and from disparate sources can be integrated, 

while overcoming syntactic and semantic 
heterogeneity in the data from each source.

Second, the cyber-infrastructure would likewise enable:

(ii) Integration, more complete and far 
better than before, of what would 
otherwise become heterogeneous sub-
models, with differing terminologies 
and units, differing spatial, temporal, 
and biogeochemical resolutions, 
differing process mechanisms and, more 
fundamentally, differing conceptual 
foundations. As our work is drawn on 
by the need and ambition to encapsulate 
ever more of “the expanding complexity, 
scope, and scale of today’s challenges” 
(NSF, 2003) in model assemblies of the 
whole, the challenge of overcoming 
such conceptual heterogeneity must be 
addressed (as already sufficiently apparent 
in the preceding Challenge # 1).

Drawn on by policy imperatives in the European Union 
(its Water Framework Directive), the Open Modelling 
Interface and Environment (OpenMI) has the ambition 
of facilitating migration of existing models (and the 
development of future models) to a new standard of 
software. Model inter-operability would be increased 
and accessibility and reusability improved thereby 
(Rizzoli and Argent, 2006). The 2008 Catalog of software 
manufacturer The DHI Group promotes MIKE 11 
and MIKE SHE as “OpenMI™ Compliant” amongst 
its comprehensive range of products for simulating 
urban, water resources, and marine environments. The 
scientific visualization of DHI Group’s MIKE Animator, 
quite inadequately sampled in Figure 3, is indicative of 
the immense technical sophistication of such software. 
Drawn on by the same European Directive, but inducing 
innovations at a more basic, scientific level, the PIREN-
Seine study (France) broke new ground, as far as we 
can tell, in placing the formerly incompatible sub-
models of the watershed, watershed headwaters, main-
stream channels, estuary, and coastal zone on a single, 
consistent biogeochemical basis (Billen et al, 2007b; Even 
et al, 2007a).

Third, an environmental cyber-infrastructure should:

(iii) Enable the two, data (from (i) above) and 
theory (from (ii) above), to be brought to 
each other more smoothly and from any 
source.
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As we shall see later (Challenge # 9), data assimilation 
is to (iii) what semantics and ontologies are to (i), in 
terms of curbing heterogeneity (Jones et al, 2006).8

Last, but emphatically by no means least, the cyber-
infrastructure must:

(iv) Facilitate less disjointed community 
collaboration — in principle, given 
the differing “languages” (jargon) 
and cultures of the myriad disciplines 
keying into the EOs — amongst more 
individuals in a more widely shared 
(virtual) workspace.

8 “Semantic integration involves clarifying data content 
in ways that are similar to controlled vocabularies, but us-
ing more powerful formal structures known as ontologies”, 
according to Jones et al (2006), who define “semantics” as 
enabling computers to interact powerfully and appropriately 
using familiar and meaningful concepts for humans, and 
“ontologies” as formal models of knowledge in a particular 
subject area useful in making inferences about data. 

We can see how even the fine detail of an integrated 
system for publishing environmental observations data 
(Horsburgh et al, 2009) contributes measurably to this.

The potential role of models, as the systematic 
lingua franca of a good deal of inter-disciplinary 
collaboration, is obvious in this last element (iv) of 
the vision. Looking ahead therefore to what will be 
expressed as one of the greatest challenges we face 
(Challenge # 7), we can imagine the archetypal 
Statistician interpreting the data, using the artful 
visualizations of the self-organizing maps of data-
mining, and gifted with the superbly trained eye for 
spotting the unexpected and uncommon correlation, 
or the intriguing nonlinear anomaly between data and 
model. But s/he is almost certain to be insufficiently 
grounded in the domain knowledge of the Marine 
Ecologist, who can proffer the hypothetical conjectures 
on why the correlation or curious anomaly is 
occurring. How might the two, one on a boat at sea, 
the other in a city office, tinker with one and the same 
scientific visualization of the model’s structure, at the 

Image used to advertize capabilities for scientific visualization of model outcomes through DHI Group’s MIKE Animator software (reprinted with permission from 
the 2008 DHI Group Catalog).

Figure 3
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same time, on their own respective computer screens?
Serving Science

Such a vision of the role of the environmental cyber-
infrastructure is beyond our reach, for the moment. 
The thrust of current research is towards realizing 
two primary facilities: first, assimilating data into a 
model, because this very process embodies the goal of 
rendering integrated and homogeneous what would 
otherwise be heterogeneous and disjoint (McLaughlin, 
2002; Williams et al, 2005; Lermusiaux et al, 2006a); 
and fore-, hind-, and now-casting with very large 
models in real time, because we have in prospect the 
wherewithal of peta-scale computing so to do.

At bottom, however, such applications accept the 
prior conceptual model structure as given, not to be 
questioned. Our next challenge is therefore this:

Challenge # 2:

What kinds of software platforms within 
the environmental cyber-infrastructure 
will be necessary for supporting extensive, 
heuristic experimentation with a model’s 
structure, i.e., in facilitating experimental 
“rewiring” of its constituent hypotheses 
and their interconnections in the assembly 
of the whole, while the inter-disciplinary 
community of environmental scientists works 
at formulating and resolving core science 
questions in the interstices amongst the 
constituent disciplines?

Given the inexorable expansion in coverage of the 
continua of time, space, and biogeochemistry — to 
include the ever smaller, the ever larger, and more of 
what is in between those expanding boundaries — 
what are the scientific milestones in what can seem 
an otherwise rather mechanistic, somewhat routine 
process of “technology-push”? What, in this same 
vernacular, is the scientific, demand-side pull? For the 
issue is not so much one of merely employing peta-scale 
computing, because it has become readily available, 
but of clarifying how exactly that technical advance 
changes the questions we can ask of science, and hope 
to answer. What kinds of scientific visualization of 
models, not currently met by the likes of Figure 3, 
will facilitate the freedom of endless questioning and 
creative dialog, as we have just imagined between our 
archetypal Statistician and Marine Ecologist?

The automated “computational thinking” (NSF, 2007) 
of the anticipated environmental cyber-infrastructure 
should be to the present Challenge what the “manual” 
thinking of the systems scientist was to the preceding 
Challenge # 1 — in working to spot and craft core, 
basic scientific questions at the interstices amongst the 
discipline-specific sub-blocks of a composite model. 
The one — unerring, systematic (here) — should 
complement, if not provoke more, of the other — the 
serendipitous (there, under Challenge # 1). As called 
for in the current NSF Program Solicitation for new 
research on “Cyber-Enabled Discovery and Innovation 
(CDI)” (NSF, 2007)9:

Ambitious CDI projects in this area [From 
Data to Knowledge] will allow investigators 
to confirm the expected and reveal the 
unexpected in multiple science or engineering 
domains.

[C]omputational thinking ... promises 
paradigm-shifting advances in more than one 
field of science and engineering

For instance, in a recent (2006) internal report from 
CUAHSI entitled High Performance Computing for 
Hydrological Sciences (CUAHSI, 2006), it is apparent 
how attaining the goal of substantially greater 
computational refinement enables a better appreciation 
of some basic questions of science. In this case, 
computational refinement amounted to finer spatial 
grids and smaller time steps for integration of the 
relevant sets of differential equations, within coupled 
groundwater, surface water, land-surface, and meso-
scale atmosphere models. The questions of science 
better then to be addressed were those of how spatially 
distributed feedbacks from the land surface influence 
weather events and the climate system. Preliminary 
results with such models (Chow et al, 2006) indicate 
the sensitivity of convective storm generation and 
precipitation events to soil moisture fields. This in turn 
prompts the more precisely targeted scientific question 
of what might be the quantitative impact of antecedent 
such fields on precipitation.

Advances likewise in ever more refined computational 
realizations of interactions at the ocean-atmosphere 
interface have enabled the question of whether 
climate change is affecting hurricane intensity to 
be accompanied now by the equally hotly debated 

9  With echoes therein of Popper’s three Worlds and 
Challenge # 0.
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complementary question of whether hurricanes have 
a significant role in affecting climate (Emanuel, 2005; 
Mooney, 2007).

It remains to be seen, however, what other such basic 
questions of science might be unearthed: first, were 
these works grounded in differential-equation models 
to be confronted with the rather different conceptual 
and computational frameworks of (spatial) pattern-
process analyses of landscape ecology (Schröder, 2006; 
hence, the IBMs of Grimm et al, 2005); and second, were 
the demands of cross-scale temporal considerations 
(minutes to decades) to be imposed upon them, as they 
must in the terrestrial biosphere models of Moorcroft 
(2006). Not yet apparent either is the extent to which 
the OpenMI or other software protocols (Rizzoli and 
Argent, 2006) would bridge with ease the heterogeneity 
of these computational frameworks and scales, thus to 
accelerate liberation of the all-important core scientific 
questions. 
Other instances can be found of this kind of 
convergence amongst domains of enquiry previously 
largely separated, where the act of synthesis has 
itself been enabled by the inexorable refinement and 
expansion in computational coverage of the continua 
of time, space, and biogeochemistry. In their study 
of the design and operation of fish passage systems 
in the Pacific Northwest of the USA, Goodwin et al 
(2006) have brought together: (i) a contemporary 
computational fluid dynamics (CFD) model to 
generate a hydrodynamic field; (ii) an interpolation 
scheme to convert this field from an Eulerian mesh 
to a Lagrangian framework; within which, (iii) an 
agent-based model of a salmon — a virtual fish 
(or Numerical Fish Surrogate; NFS) — determines 
movement of that individual in response to abiotic 
stimuli in its computed environment, such as 
water motions and physical barriers (a biological 
guidance structure, a trash-boom, and so on).

Several points are salient about this work. First, it was 
the culmination of an idea first proposed nearly two 
decades previously. Second, it benefitted no doubt 
from advances in sensor technology over that period, 
specifically in respect of acoustic-tagging of fish for 
observing their navigation through a body of water. 
Third, suggestive of what has been called the scientific 
demand-pull above, it looks towards a future in which, 
for the purposes of “decoding” patterns of movement of 
individual salmon, as they put it (Goodwin et al, 2006):

We believe new emerging methods such as 
large eddy simulation (LES) CFD modeling 

may be needed to more accurately resolve eddy 
formation and turbulence production at spatio-
temporal scales important to fish behavior.

“Decoding” is an opaque, if not tentative, word for 
using a model at the interstices amongst disciplines in 
order to shape and address questions of basic, scientific 
discovery. Much less hesitant is the work of Ruardij et 
al (2005), as we now relate.

Models and Hypotheses at the Interstices: the Case of 
Phaeocystis Revisited

What essentially causes the alga Phaeocystis to prosper 
as a “harmful algal bloom” in marine ecosystems? 
Amidst all the physical, chemical, and biological factors 
that could be relevant to answering this practically 
important question, as already recounted in respect 
of Challenge # 1 (Chapter 2.1), much may pivot on 
understanding the occurrence of polymorphism 
amongst the six currently identified Phaeocystis species 
(Veldhuis and Wassmann, 2005).

On the one hand, from the context of examining the 
system in situ, derives a fairly complex model: an 
assembly of candidate, constituent hypotheses pinned 
together as a composite conjecture on what should 
happen as a whole in the uncontrolled “mess” of the 
field (Ruardij et al, 2005). Sensitivity analyses of this 
model, designed to provoke the discovery of “new 
science”, corroborate  in part one elemental hypothesis 
— while discrediting an alternative — about virus 
penetration of a colony-forming species of Phaeocystis. 
Hence follows either the prosperity of the colonial form 
or its demise (Ruardij et al, 2005). This is what they say 
of the outcomes of their “Hypothesis testing by [model] 
sensitivity analysis” (Ruardij et al, 2005):

[W]e indicated that a reduced encounter rate 
between virus particles and colony spheres is 
adequate to explain the low rate of infection 
of embedded colonial cells. The suggested 
impermeable skin of the colonies is an 
unnecessary Deus ex machina for protection 
against virus. [emphasis added]

On the other hand, from the context of investigations 
in vitro, under the exquisitely controlled conditions 
of the laboratory, wherein careful scrutiny of a single, 
elementary hypothesis can proceed unimpeded, the 
evidence is that polymorphism can occur at different 
times in one and the same single species of the prey 



Chapter 2: Science  23

The Challenges

alga, namely, Phaeocystis globosa. It arises through 
(defensive) adaptation triggered by differing chemical 
signals in the proximity of differing forms of predator, 
each with substantially different eating habits (Long et 
al, 2007).

Taken side by side, the chemical signaling hypothesis 
has fallen through an inter-disciplinary gap in the 
composite conjecture of the model, whose study pointed 
instead towards further exploration of a viral-infection 
hypothesis. The provisional validity of the chemical-
cue hypothesis, however, built on the foundations of 
artificially isolated laboratory investigations, demands 
exhaustive further testing — through the model — in 
the quite different setting of the approximated mess of 
multiple, interacting, ongoing hypothetical experiments 
that is the behavior of a field system in situ.

With the prospect of the automated, computational 
thinking of a cyber-infrastructure, to accompany 
the thinking we shall always be doing for ourselves, 
our essential challenge is this. How might alternative 
designs of a model, organized and deployed within 
the environmental cyber-infrastructure, enhance the 
speed and efficiency of both pinpointing the potential 
questions provoking core scientific discovery and 
covering the gaps through which they might evade 
detection — and all as a complement of the much 
more familiar analyses of laboratory science?

What other such milestones, across the fields of the 
EOs, ought to be attainable 5-10 years’ hence, as grand 
scientific challenges associated expressly and uniquely 
distinctively with modeling?

2.3 Universal Science Issues and Process 
Mechanisms

The mechanics of fluid motion or the kinetics of 
microbial metabolism and growth do not recognize 
the borders we place around our disciplines. Such 
issues of scientific enquiry and their attaching 
process mechanisms are universal, in the sense that 
they present themselves in largely identical form, in 
developing and constructing models, within each of 
the domains of the three Environmental Observatories 
(EOs). These matters could be fully addressed within 
the confines of a single EO.

But how, we must ask, might their study be diminished 
in the absence of collaboration across the EOs? Or, put 
the other way around, what might be the added value 
of coordinating enquiry into these subjects, without 
restriction to any single EO, around the focus of 
models, with the intent of (again) serving the purpose 
of basic, curiosity-driven scientific discovery? And 
which subjects, in particular, might be those where 
models fulfil a role not substitutable by other forms of 
enquiry, which role itself is likely to be substantially 
enhanced by the advent of an impressively better 
environmental cyber-infrastructure?

A “Tyranny of Scales”

While Challenge # 1 dealt with cultivating research 
at the interstices amongst a variety of disciplines, 
equally significant issues of handling computational 
representation at a variety of scales were hardly ever 
out of focus — witness the case of Phaeocystis and 
the challenge of “Uncoupling the Nutrient and Water 
Metabolisms of Cities” set out in Box 1 of Chapter 2.1. 
These matters of scale surfaced just as palpably in the 
foregoing discussion of Challenge # 2 (Chapter 2.2); 
and they will here be brought to occupy center-stage.

Hydrologists have long been familiar with the problem 
of how to accommodate issues of scale in their models 
(Blöschl and Sivapalan, 1995). And scale itself has 
a number of facets to it, ranging from dependence 
on spatial scale of the mechanisms of contaminant 
dispersion in a moving fluid (Pang and Hunt, 2003), 
to upscaling and downscaling of the fluxes of water, 
heat, and carbon (C) through the soil-plant-atmosphere 
continuum (Anderson et al, 2003), and on up to the 
perspective of Earth Systems Analysis in Moorcroft 
(2006).
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Challenge # 3:

Is there a unifying and uniquely distinctive 
approach to the use of models in exploring 
issues of scale, and cross-scale interactions, 
along each of the three dimensions of (i) time, 
(ii) space, and (iii) biogeochemistry, where 
this last manifests itself across scales from 
molecular biology up to all the chemical 
and biological species comprising whole 
ecosystems?

We are drawn on by the widening scope and increasing 
depths of our needs and ambitions to comprehend the 
world about us, seeking especially for this understand-
ing to span vastly different scales of enquiry and analy-
sis. Where the Blue-ribbon Panel on Cyberinfrastruc-
ture (NSF, 2003) saw in this the enormous promise of 
our conducting science and engineering studies in quite 
novel ways, so the Blue-ribbon Committee on Simula-
tion-based Engineering Science feared the “tyranny of 
scales” (NSF, 2006). Scale is identified as the first of its 
six core issues, where “core” signals an issue common to 
the “challenges, barriers, and requirements for research 
breakthroughs” of all five of the societal benefits ex-
pected to flow from an investment by NSF in SBES.10

So great indeed appears the challenge that the Report 
talks in headline terms of “The Tyranny of Scales: The 
Challenge of Multiscale Modeling and Simulation”. It 
proceeds to observe that (NSF, 2006):

Virtually all simulation methods known at 
the beginning of the twenty-first century were 
valid only for limited ranges of spatial and 
temporal scales. Those conventional methods, 
however, cannot cope with physical phenomena 
operating across large ranges of scale — 12 
orders of magnitude in time scales, such as in 
the modeling of protein folding, or 10 orders 
of magnitude in spatial scales, such as in the 
design of advanced materials. At those ranges, 
the power of the tyranny of scales renders 
useless virtually all conventional methods. 
Confounding matters further, the principal 
physics governing events often changes with 
scale, so that the models themselves must 
change in structure as the ramifications of 
events pass from one scale to another.

10  These being in medicine, homeland security, energy 
and the environment, materials, and industrial and defense 
applications.

It is in this sense that hydrologists acknowledge that 
the mathematical structure of the description of the 
mechanisms of contaminant dispersion changes 
significantly with spatial scale.

The language of the NSF Report is robust, if not florid. 
It leaves us in no doubt:

In many ways, all that we know about the 
physical universe and about the design and 
functioning of engineering systems has been 
partitioned according to categories of scale. 
... Today, we are attempting technological 
advances that cannot tolerate any view of 
nature that partitions phenomena into neat 
categories of scale. ... The tyranny of scales 
will not be defeated simply by building bigger 
and faster computers. Instead, we will have to 
revamp the fundamental ways we conceive of 
scientific and engineering methodologies, long 
the mainstays of human progress.

Not surprisingly, the Report finds on this topic that 
(NSF, 2006):

Formidable obstacles remain in linking 
highly disparate length and time scales and in 
bringing together the disciplines involved in 
researching simulation methods. These issues 
are common to many SBES applications. 
Fundamental discoveries will be needed to 
surmount these obstacles.

We shall see more than enough evidence later of such 
“highly disparate length and time scales” in the science 
and engineering of the EOs.

Cross-scale Interactions: Space, Time, Process-
Mechanism, and Pattern

Ecologists well appreciate the challenges of addressing 
cross-scale interactions, expressed succinctly here by 
Levin (2000) in a paper on “Multiple Scales and the 
Maintenance of Biodiversity”:

Pattern and diversity arise through positive 
feedbacks on short time scales and local 
spatial scales and are stabilized by negative 
feedbacks on longer time scales and broader 
spatial scales.
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Important dynamical properties of ecosystems, 
specifically resilience and regime changes, are a 
function of the subtle — and, as yet, not well elaborated 
— interplay amongst system state variables with very 
different characteristic time-constants (Carpenter 
and Folke, 2006). Sudden shifts in regime, signaled by 
high-amplitude, fast, transient responses in some state 
variables, can be triggered by almost imperceptible 
changes over time in other (slowly changing) state 
variables. For example (Carpenter and Folke, 2006):

By operating at different spatial and 
temporal scales, competition among grazers 
is minimized and the robustness over a 
wider range of environmental conditions is 
enhanced.

Put another way around, turning the balance in our 
thinking somewhat away from variations of process 
mechanisms along the continuum of temporal scales 
towards variations along the spatial continuum and the 
emergence of patterns, we have (Grimm et al, 2005):

Ideally, the patterns used to design a model 
occur at different spatial and temporal scales 
and different hierarchical levels, because 
the key to understanding complex systems 
often lies in understanding how processes 
on different scales and hierarchical levels are 
bound to each other.

Or yet again, there is this, more obviously indicative 
of reining in the computational tyranny of scales 
(Goodwin et al, 2006):

The resulting ELAM [Eulerian-Lagrangian-
agent model] framework is well suited 
for describing large-scale patterns in 
hydrodynamics and water quality as well 
as much smaller scales at which individual 
fish make movement decisions. This ability 
of ELAM models to simultaneously handle 
dynamics at multiple scales allows them to 
realistically represent fish movements within 
aquatic systems.

In systems of environmental engineering and the built 
infrastructure, where it might well be highly desirable 
to see notions of ecological resilience incorporated 
into the design of such infrastructures, it is now 
readily apparent that understanding the occurrence 
of faults and failures, i.e., fast transient excursions 
from “desired” performance (and their management), 

is unlikely to proceed far without conceiving of  the 
system’s behavior in terms of (spectral) frequency 
distributions and responses — a framework in which 
all temporal scales of behavior are succinctly embraced 
(Beck, 2005a).11 Cross-scale interaction would there 
be expressed as a slow, incremental accumulation of 
technologies over the decades and centuries, “locking 
in” to a macroscopic form (or pattern) of infrastructure 
increasingly vulnerable to fast, transient losses of 
desired functions over hours and minutes; hence today 
the challenges of Box 1 in Chapter 2.1.

In short, and to paraphrase a part of Levin’s (2000) 
synthesis, the essential questions of cross-scale 
interactions — manifest inseparably across the space 
and time continua — are these: what processes-
mechanisms produce pattern in space-time; and, more 
pragmatically, what cross-scale interactions amongst a 
host of processes-mechanisms produce biodiversity? If 
we were to acquire  understanding in answering these 
questions, we would have insights into the stewardship 
of biodiversity.

What Challenge # 3 calls for, then, are responses to this 
kind of question: will our overcoming the “tyranny of 
scales” — in modeling and computational terms, that is 
— afford us the possibility of coming up with new, core 
scientific insights into Levin’s synthesis of the “problem 
of multiple scales”, and uniquely and more swiftly so 
than without the development of models.

11  But see also Kirchner et al (2004) in a related sense.
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2.4 Universal Science Issues of a Biological 
Nature

In the abstracted setting of Figure 1, drawn for the 
purposes of gauging advances in our capacity for 
observing the environment, the third dimension of 
biogeochemistry appears on an equal, conceptual 
footing with those of space and time. This obliged 
us to think there in terms of sampling, sensors, 
and instrumentation ranging from very small 
biogeochemical targets (dissolved chemical solutes) to 
the very large (whales), and to conceive of the intensity 
of consistent sampling in space-time of the species/
individuals within that (bounded) biogeochemical 
range. Our discussion of scale in the foregoing 
(Challenge # 3) articulates well some of the issues in 
employing models in addressing, for example, cross-
scale interactions amongst species/individuals on the 
space-time plane (of Figure 1). By comparison, it leaves 
unattended the challenges of cross-scale interactions 
along the biogeochemical dimension. For these, in 
more familiar, less abstract terms, are nothing more 
than the common subjects of enquiry in Molecular 
Biology, Ecology, the Biosphere, and Earth System 
Science.

Bringing together these disciplines of such vastly 
different space-time scales into very close proximity 
— literally, within the span of a single breath, if the 
relevant part of the foregoing sentence were to be 
spoken aloud — motivates our next challenge:

Challenge # 4:

What breakthroughs are needed in order 
to develop a more effective and complete 
paradigm of modeling biological processes — 
common to the ocean sciences as much as to 
terrestrial ecology or biological wastewater 
treatment — across all scales: from molecular 
biology to whole ecosystems, and including 
mimicking of the intelligence and metabolism 
of individuals in a population, their 
movement through an environment, and 
their interactions with other individuals, as a 
function of that intelligence and metabolism?

We live in a “biological age”, in which appeal to the 
human organism and to the biological attributes 
of evolved nature as the metaphor for the epitome 
of good design has come to stand alongside the 
clockwork mechanism of a former century. All of the 
“Recommended Immediate Research Investments” 

of the NRC’s 2001 Report on the Grand Challenges of 
Environmental Sciences (NRC, 2001) relate to ecology: 
from biological diversity and ecosystem functioning, 
through infectious disease and the environment, to 
ecosystem functioning and ecosystem services in 
respect of land-use dynamics, and on even to the need 
for hydrologic forecasting to include considerations of 
the ecological consequences of hydrologic events and 
behavior. The Report calls for, inter alia (NRC, 2001):

New techniques and capacity for nonlinear 
dynamic modeling ... that integrate 
information from the genome to the 
ecosystem

and

New methods developed to forecast blooms 
of toxic algae, incorporating both remote and 
on-site monitoring of population dynamics 
and toxin production.

In response, and as evidence of another kind — of the 
current hegemony of matters biological — we find this 
(Grimm et al, 2005):

Ecology, in the past 30 years, has produced 
as many individual-based models as all other 
disciplines together have produced agent-
based models ...

Frontiers Across the Disciplinary Domains of the 
Environmental Observatories

Let us put aside considerations of time and space, 
therefore, to focus on interactions and integration 
across scales along the continuum of biogeochemistry 
(as we are here using that expression), thus to enquire: 
in what state do we find the modeling of environmental 
systems and the biota therein, as the platform on which 
then to begin to construct illustrative responses to 
Challenge # 4?

The majority of such models, from the microbial 
ecosystems of biological wastewater treatment (Henze 
et al, 1999) to ocean ecosystems (for example, Baretta 
et al, 1995; Woods, 2005; Dippner, 2006;), rarely, if 
ever, ascend further up the (aquatic) foodweb than 
some generic, predatory fish “aggregate”, nor descend 
further than varieties of mutations of some species 
within phytoplankton, at the very base of the living 
part of the foodweb, or their infection by a “virus” 
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state variable (Ruardij et al, 2005). Exceptions to 
this are the policy-oriented multi-media models 
underpinning assessments of human and ecological 
risks from exposure to hazardous substances, whose 
computations must necessarily reach into effects on 
a host of organisms, such as earthworms, bald eagles, 
large-mouth bass, and white-tailed deer, amongst 
others (Efroymson and Murphy, 2001), and, of course, 
humans, who merit discrimination amongst five age 
groups (Babendreier and Castleton, 2005).

Scanning more broadly the frontiers of contemporary 
research across the various domains of aquatic and 
terrestrial ecosystems, we find the boundaries of 
the lowermost levels to which the biogeochemical 
continuum has been resolved in computational models 
described by the following salients:

(i) an account of the penetration of a 
phytoplankton cell by a virus and 
subsequent lysis of the cell with the release 
of more viruses (Ruardij et al, 2005);

(ii) recourse to appreciating the manner in 
which a fish detects accelerations and 
gravitation through the otolith of its 
inner ear, in order to account for how, 
through a computational, game-theoretic 
approximation, various data streams 
are processed by that fish as it then 
determines its next move (Goodwin et al, 
2006);

(iii) similarly, an appreciation of the 
neurobiology of the brain, thus the 
locus of spatial memory in a network 
of hippocampus place cells, in order 
to simulate the migration of elk, as 
boundedly rational agents (Bennett and 
Tang, 2006); and, more generally

(iv) making an individual animal’s strategy for 
foraging through its environment depend 
upon a state variable quantifying that 
individual’s energy reserves, where such 
individuals make choices over time “to 
maximize their probability of surviving 
to, and having energy reserves for, future 
reproduction” (Railsback, 2001).

Marked out thus, we can observe how these frontiers of 
environmental modeling have yet to make in-roads into 
the simulation of neural control of animal locomotion, 

such as a lamprey (Ijspeert and Kodjabachian, 1999) or 
salamander (Ijspeert, 2001).

Neither, as far as we are aware, has the coverage of any 
environmental model yet been refined down to the 
(very) small scales of the fields of computational systems 
biology and computational toxicology, which account 
for the impacts of chemicals — for good or ill — on the 
biological macro-molecules and signaling networks 
within an individual cell, within a tissue, within an 
organ, within an organism (Andersen et al, 2005).

For example, Figure 4 (from The MathWorks News 
& Notes, June, 2007) is indicative of what we might 
find in those fields. It could easily be mistaken for 
a representation of the interactions amongst the 
multiple biogeochemical species in a model of a marine 
ecosystem, cast well above the scale of an individual 
organism. The “sampling span” of the biogeochemical 
continuum in even the WPB virtual marine ecosystem 
of Woods (2005), with its underlying ambition of 
placing elucidation of the laws of Biology on the same 
footing as those as of Chemistry and Physics, does 
not begin to approach the intensity and refinement of 
Figure 4. For all the branches and nodes of Figure 4 
would not collectively rise to the significance of just 
a single state variable in the WPB model (Woods, 
2005). The entirety of their effect would have to be 
relegated to a “parameterized”, probably invariant, 
model coefficient. Figure 4, if not complex enough in its 
own microscopic context, is described in a matter-of-
fact manner as merely a “small section of a biological 
system”, albeit a part of “the world’s most complex 
dynamic systems” (as trumpeted on the cover for that 
issue of The MathWorks News & Notes).

Elsewhere, one or two isolated studies make the great 
intellectual and computational leap across very widely 
separated scales: from global climate to the genomes 
of host plants and their pathogens, at least in principle 
(and seemingly in response to the NRC’s Report on 
Grand Challenges in Environmental Sciences; Garrett 
et al, 2006); and from particle-tracking across the 
Caribbean Sea using an oceanographic model, to 
prediction of the genetic patterns resulting from long-
distance dispersal of larvae from populations of the 
staghorn coral (Galindo et al, 2006).

No study with an environmental model, however, has 
yet availed itself of any interim outcomes of the Human 
Physiome Project, whose ambition is to generate a 
model of the human body, from the genome upwards 
(Hunter and Borg, 2003), across events spanning from 
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10-6 to 10+9 seconds, disparate enough in the terms of 
the “tyranny of scales” referred to in the NSF Report on 
Simulation-Based Engineering Science (NSF, 2006).

One wonders, then, how long it will be before these 
burgeoning forms of computational technology-push 
are incorporated more fully into the mainstream of 
environmental models. More importantly, however, we 
should wonder to what purpose of what core scientifi c 
demand-pull are they to be put, and contingent upon 
what innovations in sensor technologies across the 
EOs (NSF, 2005)? What manner of data, we should 
ask, would have to be acquired by the Observatories 
to evaluate and revise a model as complex as that of 
Figure 4 (a question to be left  to Challenge # 7)?

On the Th reshold of a Breakthrough?

What unites the disciplines contributing to the 
EOs — the Ocean Sciences, Ecology, Environmental 
Engineering and Hydrology — is their shared enquiry 
into the nature of the biogeochemistry in their 
respective domains, in particular, issues towards the 

biological and organismal end of that continuum. 
Th e distinction of Challenge # 4, and therefore its 
diff erentiation from the foregoing Challenge # 3, 
is its call to go beyond the historical use of crude, 
lumpish “biomass” as the epitome of the state of a 
population of organisms. Th e “individual” is instead of 
growing importance: its metabolism, at various more 
refi ned scales of representation; its motion through 
a geochemical space; and its interactions with other 
biological individuals, both alike and diff erent from 
itself.

Th at growing importance will be seen to permeate 
many of the subsequent challenges of this White Paper, 
not least that which follows (Challenge # 5). Some 
of these are revealed in the sweep of the following 
sequence of indicative challenges, scaling up from 
the smallest of cellular details to an earth systems 
perspective and then scaling back down to behavior 
within the cell.

From the Human Physiome project (Hunter and Borg, 
2003), therefore,

Figure 4
A model of a “small section of a biological system”, albeit a part of the “world’s most complex dynamic systems”, from the cover of The MathWorks News & Notes, 
June, 2007.
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through applications of the mathematical 
theory of adaptive dynamics in respect of 
understanding speciation and evolution 
(Dieckmann and Metz, 2006);

traveling over the regional-scale 
biogeochemistry of the Seine-Paris watershed 
(Billen et al, 2007a);

on up to Moorcroft’s (2006) question of “How 
close are we to a predictive science of the 
biosphere?”;

and then from within that perspective 
of Earth Systems Science, across to the 
Millennium Ecosystem Assessment 
(Carpenter and Folke, 2006);

Kremen’s (2005) tabulation of the associated 
(global) ecosystem services;

in which she calls expressly for the design 
of new such services, all the way back down 
at the scale of the (engineered) microbial 
ecosystems of wastewater treatment and the 
work of Graham and Smith (2004);

who, in turn, call expressly upon the 
development and application of models for 
such a purpose (Saikaly and Oerther, 2004);

which models have long stood on the verge of 
characterizing the state of the system below 
the level of the individual (generic) cell of 
a given species, which, as we know well, is 
already being achieved elsewhere (outside 
the disciplines of the EOs), in models of the 
metabolic maps and systems of enzyme-
catalyzed reactions within bacterial cells 
(Alvarez-Vasquez et al, 2005; Voit et al, 2006);

we find — from across all these particular lines of 
enquiry, spanning such a huge range of scales — a 
tumultuous ferment of inter-related ideas. And for 
the moment, and more so than in the common thread 
of fluid mechanics running through the EOs, this 
intellectual ferment conveys hints of a nonlinear 
dislocation in problem-solving, somewhat different 
from the “linearity” of expecting that our models will 
continue to cover more things, in more detail.

From enquiry with the global-scale models of Earth 
Systems Analysis (Schellnhuber, 1999; Schellnhuber et 

al, 2005), based on sets of differential-equations, to the 
local-scale of individual-based models (IBMs) of fish 
and elk (Grimm et al, 2005; Schweitzer (2003)), to the 
NSF’s Blue Ribbon Committee on Simulation-Based 
Engineering Science (NSF, 2006) and its CDI Program 
(NSF, 2007), the strong suggestion is of change being 
afoot — something universal — in the way we engage 
the development and application of models in scientific 
investigation.
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2.5 Applied Mathematics and Generic, 
Dynamical Systems Properties

Three decades on from the seminal publications of 
Holling (1978) and Casti (1979) on applications of the 
mathematical theory of catastrophe; two decades on 
from Sir James Lighthill’s apology for the predominant 
determinism of applied mathematics having misled 
the public, in the face of the growing appreciation 
of mathematically chaotic behavior in systems 
(Lighthill, 1986); and a decade on from the emergence 
and diffusion of complexity theory into the study of 
environmental systems (for example, Levin, 1998), what 
today is the legacy of these theoretical developments?

It is, we submit, primarily the dynamical feature of 
resilience in the behavior of systems, in particular, 
ecosystems. The course of its development is signaled 
through the benchmarks of Holling (1973, 1986), up to 
the milestone of Peterson et al (1998), on “Ecological 
Resilience, Biodiversity, and Scale”. Its extension to 
“systems” more generally is expressed in Gunderson 
and Holling (2002). Its further codification, with 
corroborating empirical evidence is reported in Folke 
et al (2004). And some of its other manifestations 
are encapsulated in what we have already quoted 
from Levin’s (2000) work on “Multiple Scales and 
the Maintenance of Biodiversity” (in Chapter 2.3, in 
response to Challenge # 3).

Both Holling and Levin appreciate full well the benefits 
of “systems thinking” and models, as the means to 
cut across disciplines in the process of intellectual 
distillation and synthesis. Here is what Levin has to say 
of this, in the context of discussing self-organization in 
ecological systems (Levin, 2005):

It is a common exercise in evolutionary theory 
to posit assumptions about interactions, 
and then to use the general approaches of 
dynamical systems theory to explore what the 
consequences of those assumptions would be 
were they valid.

And here, writing on the role of game theory in 
identifying properties of the dynamic behavior of social 
systems, he gives succinct expression to the following 
principle (Levin, 2006):

Build models of the dynamics of systems given 
particular behavioral rules, and then explore 
the adaptive dynamics by allowing mutations 
and introductions of rare novel behaviors.

These are modes of scientific enquiry pivoting on 
hypothetical experimentation with computational 
models and directed towards extraction of the essence 
of an insight into a generic, dynamical systems property. 
They are also modes of enquiry redolent of the 
discussion of Popper’s three Worlds under our over-
arching Challenge # 0 (Chapter 1.1).

From all the immensely rich complexity of dynamic 
behavior we find about us, we seek to discern and 
then extract from study in one domain (Ecology, say) 
an essential insight about a fundamental attribute 
of that behavior, such as ecological resilience, and 
transfer it to the study of some quite other domain 
— and with handsome rewards. While there has 
been, and will continue to be, great beneficial scope 
for transferring the ideas of resilience from one 
domain to another, we ask: is the time now ripe for 
something more; something creatively different from 
that earlier extract of essential insight from Ecology; 
time for something novel to emerge from studies 
in a domain quite other than Ecology; and how, in 
particular, can environmental models and the EOs 
contribute to extraction of that novelty, if at all? For 
our concern must be with how the particular subject of 
environmental modeling might contribute in the future 
to advancing the general implications and insights of 
dynamical systems theory.

There is considerable merit, then, in seeking 
deliberately to push the responses to the foregoing 
Challenges # 3 and # 4 towards the goal of our next 
challenge, thus to communicate into yet broader 
domains the generic, scientific and mathematical 
insights deriving from the specifics of the 
Environmental Science of the EOs.

Challenge # 5:

Building on the shoulders of the various 
mathematical theories of catastrophe, chaos, 
and complexity — but with the ambition 
to go beyond these — what new insights 
into the generic and fundamental dynamic 
properties of the behavior of systems can be 
obtained from the deliberately orchestrated 
in situ observation of the behavior of many 
specific environmental systems and the 
modeling thereof? In particular, how can 
the rich experience of elucidating these 
generic features from studies of whole 
ecosystems, indeed social-ecological systems, 
be productively interfaced with exploration 
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of the novel properties of dynamical 
systems behavior yet to be discovered in 
the study of cellular metabolism, self-
repair, and self-replication? How can 
coordination of relevant research across 
all of the Environmental Observatories 
uniquely accelerate such development? 
Looking towards Challenge # 12, how can 
the community of model-builders in the 
Environmental Sciences best be organized so 
as to benefit as much as possible from novel 
developments in modeling in general, as they 
arise in, for example, the quite disparate 
disciplines of the biomedical sciences, 
social sciences, cognitive sciences, artificial 
intelligence, and artificial life?

The challenge is in large part that of drawing 
communities productively together.

Cross-fertilization: From Environmental to 
Biomedical Science

At a conceptual level, and in the archetypal mold 
of systems thinking — wherein generic insights 
into problem-solution couples from one field can be 
transferred to a second field whose problems lack 
solutions — we should be keenly interested in aligning 
the potential insights into the dynamical properties 
of metabolism-repair-replication within a biological 
cell (at the micro-scale) with those of resilience, 
at the macro-scale of whole ecosystems (Peterson 
et al, 1998). After all, resilience is about the self-
organized maintenance of function in the presence 
of disturbance, even high-amplitude disturbance, 
just as much as is self-repair in a cell. Alternatively, 
such eliding of metaphors from biology and ecology 
can be driven in rather different directions, across to 
“cities of resilience”, as a blueprint for urban planning, 
notably in the context of one of NSF’s urban-centered 
(Baltimore, Maryland) Long-Term Ecological Research 
(LTER) projects (Pickett et al, 2004).

We, in Environmental Science, have learned much 
from the study of ecological systems. Now, it might 
be said, the opportunity is to learn from studies in 
Biomedical Science. For it is in that domain where 
the functions of metabolism, repair, replication, and 
so forth actually operate and are, therefore, most 
naturally cast for closer study — study targeted, that is, 
at discerning (and extracting) key, generic properties of 
dynamical systems behavior.

What theoretical advance might eventually be expressed 
from this muddling of ecology, cellular biology, and 
cities? Consider this, then. The seminal notion of 
ecological resilience has been elaborated further as 
entailing the following (from Peterson et al, 1998):

... [E]cological resilience is generated by 
diverse, but overlapping, function within a 
scale and by apparently redundant species that 
operate at different scales, thereby reinforcing 
function across scales.

The combination of a diversity of ecological 
function at specific scales and the replication 
of function across a diversity of scales produces 
resilient ecological function.

What principles for re-designing the dynamic 
performance of a city’s water infrastructure could 
we derive from these, through merely substituting 
the word “species” by “unit process technology”?12  
Furthermore, let us recall the multiplicity of “scales” 
apparent in the illustration of “Uncoupling the 
Nutrient and Water Metabolisms of Cities” in Box 1 in 
Chapter 2.1. Mixing now our domain metaphors (from 
Ecology and Biomedical Science): how could any such 
principles of design be employed to compensate for 
the ills of the city’s metabolism, including in respect of 
subliminal (self-organized) damage-limitation and the 
initiation of self-repair in the face of disturbance and 
threat (Beck, 2005a)?

Cross-fertilization: From Environmental to 
Social Science

To reiterate, many of the insights we have acquired 
over the past 30-40 years about the dynamic behavior 
of systems, in general, have been insights about the 
behavior of ecological systems, in particular. Such 
growth in knowledge, however, has been drawn 
largely from the perspective of populations of species 
(phytoplankton, zooplankton, budworms) viewed 
broadly and crudely as “biomasses”. The behavior 
of individual organisms within any biomass was 
customarily not singled out for simulation: neither 
in respect of that individual navigating through its 

12 In asking this question, we acknowledge both the 
essential differences between “engineering resilience” and 
“ecological resilience” (as discussed in Holling, 1996) and the 
fact that the latter has itself yet to be incorporated into the 
design of these technological systems of water infrastructure 
(Beck, 2005a).
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environment, while negotiating with other individuals 
(in its, or another, biomass); nor in respect of the 
dynamically changing state of an individual, either in 
terms of its metabolism (at a sub-cellular level) or its 
intelligence and perception of its surroundings.

In short, the frontier stands now at the desire and 
need to understand and simulate the sentient 
individual organism within its ecosystem, i.e., its 
environment containing individuals from its own 
and other species. The difference is subtle, but highly 
significant. The complement of driving the insights 
of resilience into the more microscopic details 
below the crudeness of simple biomass is that of 
learning from peering outwards and upwards to the 
larger society in which that biomass participates. 
Whereas opportunity lies in the study of problems 
in biomedical systems, so too does it lie in tapping 
into the domain of modeling in the Social Sciences.

Steeped in the conceptual framework of resilience, 
Hawes and Reed (2006) are embarking on seizing 
that opportunity, with their ambitious agenda for the 
computational study of that dynamical systems property, 
notably in agricultural and terrestrial ecosystems:

Though there are many models of system 
change and resilience in ecology, and many 
applications of computational techniques to 
ecological systems, there are few that unite the 
two disciplines, placing ecological interactions 
at the heart of new computational algorithms.
The project for which this work forms a part 
aims to take ecological approaches to system 
function, and individual-based modelling in 
particular, as a starting point for development 
of a massively scaled multi-agent system that 
uses inter-agent communication to model the 
flow of energy through the system.

The significance of what we here would call the 
imminent environmental cyber-infrastructure has not 
escaped their notice (Hawes and Reed, 2006):

The system implementation and resilience 
analysis protocol will first be validated by 
comparison with existing ecological data, 
before then being applied to new problems of 
larger, more complex ecosystems, and thence 
to similar problems of large scale distributed 
and Grid computing. In this way, we aim 
to develop a practical theory of resilience 
which can be reused in the design of artificial 

complex systems in eScience and e-commerce 
domains.

It is but a short step from agency in these terrestrial and 
agricultural systems of Hawes and Reed (2006) to the 
metaphor of an “animal grazing in its pasture”, offered 
by Rees and Wackernagel (1996) for conceiving of a 
city’s ecological footprint. With the connection to the 
city thus established, a further small step will take us to 
transcribing the notion of the “sentient organism in the 
ecosystem” to that of the “{city and its infrastructure} 
in the {watershed}”. Paris, given the accumulating 
restoration of the past several decades (Billen et al, 
2007a), could well be conceived of as the “bull” in the 
“china shop” of the Seine watershed — a metaphor 
provoking yet further steps towards conceptions of what 
cities could become (Crutzen et al, 2007). 

Models, we already know, have been developed for 
simulating how elk and fish navigate through their 
environments (Bennett and Tang, 2006; Goodwin 
et al, 2006), with recourse in their construction to 
anthropocentric notions such as a “game-theoretic 
approximation” and “boundedly rational agents” 
(Chapter 2.4 and the foregoing Challenge # 4).

Yet another step outwards and away from mere 
biomass as state variable in a model brings us to the 
intense, current interest in deploying the models of 
computational game theory in order to understand how 
cooperation amongst individuals arises in a community 
(for example, Dieckmann and Metz, 2005; Levin, 2006; 
or Ohtsuki and Iwasa, 2006). Indeed, this interest may 
not only be intense, but urgent. In his Kyoto Prize 
Laureate Lecture (November, 2005), entitled “Learning 
to Live in a Global Commons: Socioeconomic 
Challenges for a Sustainable Environment”, Levin gives 
us yet another insight into the cross-disciplinary nature 
of systems thinking (Levin, 2006):

The great challenge then is to understand 
when and how cooperation has evolved in 
biological systems, and what lessons we can 
derive from these insights for how to achieve 
cooperation in dealing with our future 
environment.

Finally, beyond the rudimentary psychology of 
Ohtsuki and Iwasa’s (2006) search for the theoretical 
underpinnings of cooperation, another step can be 
notched up, in our path towards Social Science. It 
would bring us to the work of Janssen and Carpenter 
(1999) in simulating the interaction between the 
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environment and human agents, each imbued with 
varying cultural outlooks on the Man-Environment 
relationship and capacities for learning (from each 
other, and from economic and environmental data). 
Few, if any, computational environmental studies have 
yet gone further. 

Synthesis (Culmination): Nurturing Classical “Systems 
Thinking”

When contemplating the behavior of individuals in 
herds, flocks, swarms, communities, or societies, it 
has become natural to think of simulation in terms of 
agent-based models, or the IBMs of Grimm et al (2005). 
Our hopes for this are not small (Levin, 2005):

The literature is too diverse and fast moving 
to allow an adequate review here; suffice it 
to say that the development of agent-based 
approaches to understanding all aspects of 
biospheric organization, from proteomics to 
nutrient cycling to civilizations, is one of the 
most active and exciting areas of research, 
crossing disciplines and yielding new insights 
into the workings of the world.

“Systems thinking” and synthesis flow in other ways 
as well. The following — on extracting generic insights 
into adaptive dynamics in systems and then mobilizing 
them across various disciplinary domains of enquiry — 
is a classic expression thereof (Levin, 2006):

Moving from the ecological to the social or 
economic situation simply completes the loop 
— these are ideas that had their origins in 
economics, were adapted and modified for 
biology, and now find new application in their 
original setting.

We shall encounter later (in respect of Challenge # 
12) the telling significance of this in responding to the 
community-oriented issues of our current Challenge # 5.

The essence of Challenge # 5, however, lies not so much 
in advancing the sophistication of IBM computational 
platforms, but in developing and implementing 
programs of research designed to reveal new insights 
into general dynamical systems properties (from the 
study of those environmental systems within the 
purviews of the EOs).

We presume there must be alternatives to the pursuit 
of IBMs alone, since nonlinear differential equations 
and classical calculus are clearly still predominant 
in so many other areas, at scales both above and 
below that of an individual organism. They are 
used in the very small, to study metabolic maps 
(systems) of enzyme-catalyzed reactions within 
bacterial cells (Alvarez-Vasquez et al, 2005; Voit et 
al, 2006) (exemplified by Figure 4). And they are as 
much the basis of models literally of global behavior 
(Kohring, 2006), whose concern is to find (and avoid) 
chaotic behavior in Sanderson’s elementary model of 
global demographic, economic, and environmental 
interactions (Wonderland; Sanderson, 1994).

But what could these two schools of thought generate, 
in response to our challenge, when pursued in tandem: 
the classical nonlinear dynamical analyses associated 
with control theory, on the one hand,13 and the IBMs 
of Grimm et al (2005), Levin (2005), and Hawes and 
Reed (2006), amongst many others, on the other hand?

Tending in an encouraging direction from the one 
side is Casti’s (2002) advocacy of “biologizing control 
theory”, with its intellectual foundations set in the 
mathematical analysis of autopoietic systems — 
defined as those that are “capable of self-maintenance 
owing to a process of components self-generation 
from within”, which “generalizes the definition of life” 
according to Bitbol and Luisi (2004). Such systems, 
it appears, are not “Turing computable”, however 
(Luisi, 2003). The pragmatic challenges of our needs 
for the oncoming environmental cyber-infrastructure, 
such as those of software protocols for bridging the 
heterogeneity of computational frameworks (for 
example, that of OpenMI arising under Challenge 
# 2 in Chapter 2.2), would seem to pale into 
insignificance in comparison to that challenge.

13 Which analyses have struggled to find proper and 
effective expression in ecology (Loehle, 2006), albeit less so 
in the metabolism of cells, where Voit et al (2005) are now 
able to characterize a feedforward switching mechanism in 
bacterial glycolysis and lactate production.
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2.6 Observatory Network Design and Operation

Let us recognize a fact. This White Paper would not 
have been written, nor would there have been any 
Workshop in Tucson on “Grand Challenges of the 
Future for Environmental Modeling”, were there to 
have been no Environmental Observatory initiatives 
in the first place. Grand issues in science provoke 
equally grand programs of observation, to the 
outcomes of which — data streams — developments 
in computational modeling will be tailored. In terms 
of large expenditures of funds, the logic is unlikely to 
run the other way, although in places our Challenge # 
1 urges that it should, as in prompting basic enquiry 
at the interstices amongst disciplines. Others have 
ventured further (Dennis et al, 2002). They recommend 
that priorities for developing novel sensing devices 
should be contingent upon those barriers to theoretical 
progress identified in unraveling the complexities of 
atmospheric chemistry when assembled and simulated 
in a large-scale computational model.

Nothing in the strength of this generally forward 
flowing logic from field observation to model, however, 
precludes the effective use of models in the design 
of observing programs and, therefore, parts of the 
Observatories themselves. As we turn now to this 
topic and embark on the next sequence of challenges 
(Challenges # 6 through # 9), we shall pick up our 
organizing triplet {u, M, y} from Chapter 1.2 — of the 
observed inputs (u), model (M), and observed outputs 
(y) — and put it to work, to ask in various textbook 
ways: given two out of the three unknowns, find the 
third.

An Immediate Need for Models: Observing System 
Simulation Experiments

No experimental design, or design of an EO, can 
proceed technically in the absence of a model, albeit a 
mental model. Our focus herein is on computational, 
mathematical models (M) and their role in both the 
design and operation of observatory monitoring 
and sensor networks. The work of Wu et al (2005) 
is indicative of this focus. In their case, complex 
groundwater flow and contaminant transport models 
are used to generate a cost-effective sampling strategy 
intended for management of a contaminant plume. 
Clearly, in so very many cases across all facets of the 
EOs, our M are self-evidently much more sophisticated 
than mere mental models. There are, therefore, many 
instances in which computational models should be 

(and are) employed in the designs of the EOs, before 
they are put in place.

Observing System Simulation Experiments (OSSEs) 
have a long history, originating in meteorology and 
climatology, where over 20 years ago Arnold and 
Dey (1986) found the subject already sufficiently 
mature to warrant a survey of its “past, present and 
future”. Almost as mature are their applications 
in oceanography (for example, Raicich, 2006). The 
proposal of Krajewski et al (2006) for a Remote 
Sensing Observatory (RSO), as a CUAHSI-inspired 
form of hydrological EO, cites OSSEs as the means of 
estimating the “impact of planned future observing 
systems and determining requirements or gaps to 
help guide priorities for unplanned future observing 
systems”. OSSEs in Environmental Engineering, 
directed expressly at operational management under 
all manner of observing network and sensor failures, 
incorporate the simulated dynamics of not only the 
observed entity but also of the sensing instruments 
themselves (Rosen et al, 2008).

In our cryptic notation, presuming a model M and 
given an input, forcing-function sequence u, some 
hypothetical bundle of data [u,y]0 can be generated, 
as though “complete” observations of the real system, 
error-corrupted or not, resolved down to some fine 
spatial and temporal scale (if not biogeochemical scale). 
The goal of the OSSE is to find that “incomplete”, 
i.e., sampled, more coarsely-scaled combination 
of measured variables [u ,́y΄]S that optimizes some 
function of monitoring cost and/or measure of 
confidence (uncertainty) in the recovery of estimates 
of [u,y]0 from [u ,́y΄]S.14 In the context of the OSSE, the 
model serves the purpose of identifying an appropriate 
sampling strategy for yielding data about the state of 
nature, as encapsulated in [u,y]. These data will then 
serve the purpose of various scientific questions, not 
necessarily the goal of expressing anything further 
about a computational model, including that (M) 
employed in the OSSE itself.

Across the spectrum of disciplines, the most insistent 
plea emerging from the Tucson Workshop was for 
the systematic application of procedures such as 

14  Here u΄ and y΄ denote vectors of observed system 
inputs and outputs of, in principle, different (smaller) orders 
and different elements from those of u and y; superscript S 
denotes the fact that observations are taken at discrete points 
in space and instants in time, such that they are not literally 
continuous at some sufficiently fine-grained scale, denoted 
by superscript 0.
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OSSEs in the design of each EO, before it is fully 
constructed — as currently intended in Phase II of the 
WATERS Network EO (WATERS, 2008). OSSEs are 
not new. Their maturity indeed strengthens the case 
for their further use, for contemporary Observatory 
network design, more so than network operation. 
And doubtless, their computational scope and 
sophistication will continue to grow.

Experimental Design for Model Identifiability

The archetypal problem of experimental design 
expressed in Chapter 1.2, of choosing the contents of 
u and y so as to maximize the “identifiability” of M, 
has intrinsic merit in the context of modeling for its 
own sake. As opposed to design for stewardship of 
a contaminated area of land (Wu et al, 2005), it is a 
design for learning, if not discovery: of progressing 
from a prior model (Mprior 

) to an improved posterior 
model (Mposterior 

) of how the observed piece of nature 
behaves.

Interest in formally solving this problem began in 
earnest in the 1970s, primarily in terms of finding 
uniquely “best” or minimally uncertain estimates 
of the model parameters appearing in M, i.e., a “well 
identified” model. Input perturbation (experimental) 
design was being studied as a subject of optimization, 
to serve the needs of the then burgeoning schemes 
of adaptive, real-time (on-line) control in engineered 
systems. Today, wherever the nonlinear Michelis-
Menten or Monod kinetics of growth of microbial 
organisms appears in a model — in wastewater 
treatment (Petersen et al, 2001; Brun et al, 2002; Stigter 
et al, 2006), river water quality and lake ecology (Brun 
et al, 2001; Omlin et al, 2001) or oceanography (Raick 
et al, 2006) — some detailed account of the problem of 
(a lack of) model identifiability is given.

In fact, the problem of a lack of model identifiability is 
nigh on ubiquitous: it permeates the present Challenge 
# 6, in attempts at minimizing, suppressing, or 
circumventing it; similarly Challenge # 7, where the 
key goal is to cope with it and quantify its associated 
uncertainties; as much as in Challenge # 8, which 
calls for robust forecasts in the face of it. The thread 
of uncertainty connects the three (Beck, 1987): 
experimental design for the pre-emptive reduction 
of model uncertainty (Challenge # 6); identifying 
the model in spite of all the uncertainties — and 
enumerating them and their loci in the model 
(Challenge # 7); and accounting for the consequences 

of those residual uncertainties, as they propagate 
forward in any forecasts generated with the model 
(Challenge # 8). There is no shortage, then, of 
discussion elsewhere of the issue of a lack of model 
identifiability, conspicuously so in the literature of 
Hydrology. This Paper will be no exception, although 
the burden of the attaching discussion will be deferred 
until expression of Challenge # 7 in Chapter 2.7.

Sustained thus for nearly three decades now, the design 
of optimal, probing inputs (u) is culminating in what 
can only but be described as “systematization” on an 
almost industrial scale, as befits the contemporary 
scene in biotechnology more generally (Lindner and 
Hitzmann, 2006):

Combinatorial chemistry will create new 
enzymes, whose kinetic parameters have to 
be elucidated efficiently. High-throughput 
techniques are applied here for target finding. 
By using such an experimental design 
approach in this area, the additional effort 
will be rewarded by a higher precision in 
parameter estimation, producing more reliable 
results in target finding.

The work of Lindner and Hitzmann (2006) examines 
the optimal allocation of finite observing and 
perturbation capacities, in principle (in theory). That 
of Petersen et al (2001) deals with the same, but in the 
practical design and operation of instruments to be 
placed in the harsh, rugged environment of microbial 
growth in biological wastewater treatment. To their 
work has been added the significant refinement of 
adaptive specification of input (feeding) perturbations 
as learning proceeds on-line in respect of the (model 
of the) behavior of the system (Stigter et al, 2006). We 
stand, therefore, on the verge of having very “smart” 
instruments: on-line respirometers, i.e., microcosms 
of the prototype system, wherein identification of 
the model of that instrument, MI (with superscript I 
denoting instrument), is being performed in a “self-
aware” and “self-optimizing” manner in real-time. The 
smart instrument performs these functions, moreover, 
in the service ultimately of progressing from a prior 
model, Mprior, to an improved posterior model, Mposterior, 
of the environmental system itself (not the instrument). 

Unlike the fed-batch reactor in a respirometric 
instrument, or even the engineered unit processes of 
wastewater treatment, larger-scale, field hydrology 
cannot benefit in general from deliberate manipulation 
of the inputs to the system (u). It does enjoy the 
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significantly perturbing events of precipitation, 
nevertheless. In a somewhat restricted sub-domain, 
where knowledge is required of the particular paths of 
water flow through a watershed (Vaché and McDonnell, 
2006) — for example, because of the different chemical 
signatures attaching to each path (as in the response 
of streams to inputs of acidic precipitation) — the 
role of natural tracers in concert with happenstance 
precipitation sequences has been expressly studied 
from the perspective of model identifiability and 
experimental design (Beck et al, 1990). Given a model 
of the watershed (M) and observations of stream flow 
and tracer concentrations, the question was, in essence: 
what kind of precipitation event at the right time in the 
right sequence of events (or absence of events) would 
reveal more about the behavior of the system, and more 
clearly, with less uncertainty attaching to the posterior 
estimates of the model’s parameters?

Adaptive Sampling and Observatory Operations

From experience of the natural environment, we 
note the potential opportunity of contingencies. 
From the well controlled, constructed environments 
of biotechnically engineered systems, derives access 
to smart instruments and a rich supply of detailed 
theoretical studies of experimental design. Benefitting 
from both, our next challenge assumes this textbook 
form. Given M, and given the revelation that current 
observations (u with y) from an operational EO are 
inconsistent with that M, how should observing 
capacity (u, y) be redeployed?

Expressed less cryptically, we have this.

Challenge # 6:

Given a mature complex of environmental 
cyber-infrastructure and sensors, with — 
crucially — both an ever-alert monitoring 
and horizon-scanning facility and in-
depth capacity for real-time processing 
of information and production of 
knowledge, what kinds of novel, model-
based computational schemes of adaptive 
environmental sampling will be needed 
to enable rapid re-targeting of observing 
capacity for on-line probing of, and 
experimentation with, systems behavior?

According to Darema (2005) the phrase “Dynamic 
Data Driven Applications Systems” (DDDAS) entered 

the lexicon of discussions of cyber-infrastructure 
some time in early 2000. It is only because of the 
advent of Grid computing and the prospect of 
an environmental cyber-infrastructure that we 
are able to contemplate responding to the above 
challenge. And by far the most interesting facet of 
the envisaged environmental cyber-infrastructure 
is the presumption of its scope for two-way 
communications: that somehow the implemented, 
but planned, observing functions of the EOs are 
sensitized to detecting an anomaly and invested with 
sufficient “intelligence” for redeploying observing 
capacity to re-focus on that peculiarity, in an instant, 
in real-time.

Figure 5 is one instance of such a vision, taken from 
the work of Mahinthakumar et al (2006) on threat-
response in public, potable water supply systems. The 
purpose of this ever-alert cyber-infrastructure and 
DDDAS, continually primed and poised to detect 
an “incident”, is to address questions such as these 
(Mahinthakumar et al, 2006):

Where is the source of contamination? When 
and for how long did this contamination 
occur? Where should additional hydraulic 
or water quality measurements be taken 
to pinpoint the source more accurately? 
What is the current and near future extent 
of contamination? What response action 
should be taken to minimize the impact of 
the contamination event? What would be the 
impact on consumers by these actions?

Its features are not greatly dissimilar from the 
DDDAS of Flikkema et al (2006), which seeks 
to control a poised, ever-alert network of smart 
wireless sensors in order to improve (ultimately) the 
prediction of biodiversity and carbon accumulation in 
terrestrial ecosystems. The case-specific questions of 
Mahinthakumar et al, (2006), if solved by the cyber-
infrastructure in a more automated manner, would 
begin to articulate some of the ideas of subliminal 
damage limitation and self-repair expressed earlier in 
the same domain of metropolitan water infrastructure 
(with reference to Box 1 of Chapter 2.1, under Challenge 
# 3 and, in particular, Challenge # 5; Beck, 2005a).

We shall exploit these more generic features of Figure 5 
in outlining indicative responses to Challenge # 6.

Consider this. When operating in a normal, routine 
mode, suppose the Observatory is gathering in data 
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[u,y]S at some coarse level of resolving power relative 
to [u,y]0 (as previously defined) and with a model of 
the environmental system that is invariant with time, 
M. In the frame of Figure 5, M will be embedded 
in the “simulation engine”; [u,y]S are what pass into 
the “adaptive wireless data receptor and controller” 
from the sensors; while [u,y]0 constitutes the universe 
of all that could be happening in the environment 
surrounding the cyber-infrastructure.

Let us further assume that at some point in space-
time, P(t,s), something in the “gap” between [u,y] S 
and [u,y]0 — something conceptually originating 
in the {acknowledged unknown} —  impinges upon 
the behavior of the system, including a spontaneous 
opportunity for better or different learning about the 
nature of the observed system. Alternatively, suppose 
something occurring within the data stream [u,y] S is 
significantly not consistent with M, i.e., not consistent 
with the {presumed known}. Or we could imagine an 

incident where what the cyber-infrastructure perceives 
through [u,y] S as anomalous, originates in neither the 
{presumed known} nor the {acknowledged unknown}. 
Instead of the event originating in the environment 
of the cyber-infrastructure, [u,y] S is corrupted as 
a consequence of faults and failures in the sensor 
network, such as within the “static water quality sensor 
network” of Figure 5. Or there again, all three types of 
event could occur as an entangled, compound incident. 
In short, the event has propagated into the core of the 
cyber-infrastructure, triggering the kinds of questions 
already listed above (Mahinthakumar et al, 2006).

At this point in our thought experiment, the essential 
question of Challenge # 6 is as follows: how should the 
finite observing capacity be re-deployed, away from 
the previous regime [u,y;t -] S towards [u ,ʹy ;ʹt +] S where 
t- marks time before t and t+marks time after t, the 
moment of the event. What signals are to pass back out 
of the enabling cyber-infrastructure of Figure 5, from 

Schematic vision of a Dynamic Data Driven Applications System (DDDAS) for threat response in public, potable water supply systems (Mahinthakumar et al, 2006; 
reprinted with permission).

Figure 5
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the “adaptive wireless data receptor and controller” 
block, to the sensors in the field? This, of course, 
implies an answer to the prior question, of detecting 
the occurrence of the event in the first place and then 
diagnosing the nature of its several possible components.

At the heart of contemporary work on fault detection 
and environmental vulnerability in a real-time network 
for monitoring water quality in the Lagoon of Venice 
(Ciavatta et al, 2004), resides the notion of a model of 
time-varying structure (M(t)) as the means to solve 
such problems. In other words, there can be “structural 
change” in the behavior of a system. M is not invariant 
but evolving with time, from M(t-) to M (́t+), a matter 
of considerable significance below in expressing 
Challenge # 7 (Beck, 2002; 2005b). Cast in the cyber-
infrastructure of Figure 5, this would be tantamount 
to the “adaptive simulation controller” managing an 
adaptive model, with the flow of “model parameters” 
between controller and “simulation engine” reversed, 
if anything. For it is the reconstructed temporal 
variations in these parameters — their drifts, jumps, 
oscillations, and so forth, estimated recursively in real 
time (t) — that offer uniquely defining insights into the 
nature of the event. Hence, a particular re-deployment 
of the sensor network’s observing capacity can be 
determined; and that is the essential output from the 
cyber-infrastructure in this instance.15

Hints of such adaptive capacity, in the performance 
of the cyber-infrastructure, as much as through 
“structural change” in an adaptive model, can be found 
in Lermusiaux et al (2006a), who write as follows of 
“adaptive sampling” and “adaptive modeling” in the 
context of ocean research:

Adaptive sampling forecasts the observing 
paths that minimize uncertainties, optimizes 
the sampling of dynamical hot spots and 
maintains overall coverage. Adaptive 
modeling selects the physical or biological 
parameterizations that give the best model-
data fit.16

15  Using indeed the same algorithms of recursive 
estimation undergirding the adaptive, experimental control/
probing of Stigter et al (2006); and broadly consistent, 
therefore, with the Bayesian algorithmic setting of Figure 5 
(Mahinthakumar et al, 2006), likewise too that of Flikkema 
et al (2006).

16  This may, however, suggest an instance of a number 
of alternative, time-invariant, candidate, model structures 
Mi, i = 1, ..., n, with evolving probabilities assigned at suc-
ceeding points in time (t) in order to describe the structure 

They proceed to qualify their definition of “adaptive 
sampling” as (Lermusiaux et al, 2006a):

The path, locations and other properties 
of observing platforms and sensors can be 
optimized and adapted in real-time, so as 
to respond to the ocean variability and its 
uncertainties.

and elsewhere as (Lermusiaux et al, 2006b):

[A]daptive sampling estimates the types and 
locations of the observations that are most 
needed.

[A]daptive modeling identifies the model 
properties that need most improvements.

Erasing Boundaries Between System, Sensor, Cyber-
infrastructure, and Model

The distinctiveness of the approaching environmental 
cyber-infrastructure is its promise of a seamless 
integration of communications: from point of sensing 
in the environment to the computer screen in front 
of the analyst; and back, in the reverse direction, 
from keyboard/touch-screen to the object of scrutiny 
in situ. Anticipating this operational, real-time 
Observatory facility, science planning for the WATERS 
EO envisages a continual two-way re-allocation of 
resources across the cyber-infrastructure to track, for 
example, any incipient and then unfolding anomaly in 
the occurrence of a coastal hypoxia event (WATERS, 
2007a, 2008).

Where exactly the intelligence of the computational 
model is to be vested, along the communications bus 
between office desktop and sensor in the rough of 
the field (as, for example, in Figure 5), is becoming 
now a matter of rather free and thought-provoking 
interpretation. Environmental engineering, for 
example, is taking such interpretation to considerable 
sophistication, in particular, in wastewater systems 
engineering, with its interest in the operational control 
of microbial ecosystems. As we have seen (Petersen et 
al, 2001; Stigter et al, 2006), a model (MI) may become 
integral to the sensing device, as in the microcosm of 
an in-line respirometer, whose deliberate mechanical 
functions, of aeration, mixing, and quiescence, are 

most likely to reflect observed behavior at that time — some-
thing of significance in Challenge # 8.
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geared to maximizing the identifiability of the model 
of the observed system itself (M) (Vanrolleghem et 
al, 1996). In the cyber-infrastructure of Figure 5, MI 
would be embedded in the sensor block “static water 
quality sensor network”, while M is lodged in the 
“simulation engine”.

There is a certain complementarity. Just as the model 
(MI) can be embedded in the (real) sensor, so the 
behavior of the (virtual) sensor can be incorporated 
within the model (M) of the whole — simulation, in 
effect, of the cyber-infrastructure and the observed 
environmental system (Rosen et al, 2008).

Stepping back from the clutter of the technical detail, 
while noting the potential for our thinking to be 
blinkered by the focus of this Paper on the role of 
modeling in the EOs, three further vital questions 
follow: can the essential adaptation in re-directing 
observing capacity (in an instant; at a moment’s 
notice) be implemented without a computational 
model (M); how should the value added in conducting 
the adaptation with a model be maximized; and can a 
model be expressly designed with such maximization 
in mind?

2.7 System Identification

We all want the model to approximate the real thing 
in some demonstrable manner, for reasons of scientific 
enquiry or for some other purpose, such as making a 
prediction in association with determining a course of 
future actions of environmental stewardship. Indeed, 
the extent to which the model can be reconciled with 
past observed behavior is a measure of the extent 
to which we might judge the primary science to be 
provisionally corroborated. At the same time, the 
map of uncertainty attaching to the posterior model’s 
conceptual structure and its constituent mechanisms, 
after this process of system identification, will 
have significant consequences for any exercises in 
forecasting and investigating possible future patterns 
of behavior (Beck, 1987). In this sense, the second 
and third of our textbook problems from Chapter 1.2, 
i.e., “given u and y find M” (system identification) 
and “given M and u find y” (forecasting and foresight 
generation) are intimately inter-related. Both, 
however, are sufficiently substantial to merit their own 
respective Challenges, and will therefore be treated in 
separate chapters.

For a Paper on grand challenges for environmental 
modeling (M) — arising expressly from initiatives (the 
Environmental Observatories) designed to provide 
access to unprecedented streams of data [u,y] — there is 
arguably no greater challenge than that of responding to 
the novelty unleashed thereby in those “acts” of Lewis, 
“which interpret data in terms of concepts”, i.e., system 
identification. This is model calibration writ immensely 
more richly. And because the richer, more philosophical 
facets of system identification can so often be obscured 
by the straightforward pragmatism of model calibration, 
there is considerable intricacy and deeper subtlety 
now to be conveyed. Much of the supporting detail 
of the narrative surrounding this next Challenge has 
therefore been placed in Boxes 2 and 3. From that detail, 
however, emerges an important emphasis on scientific 
visualization as part of a preliminary program of 
research for responding to the Challenge.

History: Algorithms for Model Calibration

Inasmuch as the 1960s were a time of “youthful 
exuberance” in the development of environmental 
simulation, so did great expectations surround the 
outward dispersal of the computational methods of 
Statistics, Operations Research, and Control Theory, 
from aerospace engineering into environmental science 
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and, for present purposes, into the topic of model 
calibration (Beck, 2002).17 The prior, rudimentary 
practice of trial and error — of trying out different 
values for the model’s parameters (α) until the “curve” 
of the estimated outputs would match satisfactorily 
(in some sense) the “dots” of the observed output 
data — was to be supplanted by the more systematic, 
objective procedures of mathematical programming, 
optimization, mathematical filtering theory, and 
the like. The modernism of “automatic calibration”, 
detached from subjective manipulation, was to 
supercede the craft-skill of “calibration by hand”. It did 
not. The two co-exist fruitfully today, notwithstanding 
the supposed academic inferiority of the latter.

Such difficulties in applying the computational 
algorithms of model parameter estimation and system 
identification are not surprising. For we have already 
examined in some depth model-based procedures 
of experimental design, for overcoming a lack of 
model identifiability (in Chapter 2.6 in respect of 
the foregoing Challenge # 6). To recall, a lack of 
identifiability is defined technically as the inability to 
locate a set of values for the model’s parameters that 
are self-evidently superior to the myriad of all other 
candidate sets of values in generating a uniquely best 
match between the model and the data. Attempting 
to overcome a lack of model identifiability matters 
philosophically — in the growth of secure knowledge 
— because this implies a determined attempt at 
expunging ambiguity in interpretations of Lewis’s 
“data” and at reducing to a singularity an otherwise 
plurality in his plausible  “sets of concepts”.

These difficulties of a lack of model identifiability arose 
not because of the inadequacies of the algorithms 
themselves, but as a result of the growing complexity 
(and nonlinearities) of the models, on the one hand, 
and of the nature of the data, on the other — their 
sparseness across the space-time-biogeochemical 
continua and their uncertainties. Whereas calibration 
by hand may never have shed light on such difficulties 
of model identifiability, automatic calibration revealed 
them very early on and all too consistently since. 
They may seem esoteric difficulties, of concern only to 
Science. Yet they matter to the public, since Mooney 
fully intends scientifically-lay members thereof to 

17  A topic — of whether to calibrate a model or not — 
that remains controversial, or at least one in which different, 
opposed schools of thought continue to prosper: witness the 
current views of the recently published NRC document on 
evaluating models used in the regulatory decision-making 
process (NRC, 2007; pp 124-126).

read his (2007) popular account of “Storm World 
— Hurricanes, Politics, and the Battle Over Global 
Warming” (Mooney, 2007). His account (literally) 
personifies what we shall describe below as the matter 
of model structure identification.

One of the most significant algorithmic developments 
in the 1970s was thus a retreat from the expectations 
of automatic calibration to a procedure of hypothesis 
screening, known familiarly today as a Regionalized 
Sensitivity Analysis (RSA; Hornberger and Spear, 1981). 
Our discussion has already alighted on this, in Chapter 
2.1 (Challenge # 1). RSA was tailored to the needs of 
evaluating the model-encoded science base in those 
very many situations with but sparse, quantitative 
data supplemented by the qualitative, subjective, 
experience of the system’s apparent behavior, as 
gathered informally by scientists working in the field. 
Its goal was to answer the question: under the gross 
uncertainties of system behavior observed as such, 
which more or less speculative constituent hypotheses 
in the model are key — and which redundant — to 
discriminating whether the model generates behavior 
akin (or not) to that observed experience.

This conceptual and algorithmic break with the 
expected trend was in due course reflected back onto 
the study of more conventional, less-sparse, data 
situations (Hornberger et al, 1985; Keesman and van 
Straten, 1990); adapted to incorporate some of the more 
subjective elements of interpreting matches of model 
performance with observed data (Wheater et al, 1986); 
and re-combined conceptually with the mainstream 
of those algorithms of automatic calibration that had 
evolved in the meantime (Gupta et al, 1998); thus to 
be found in its current realization under the label of a 
“dynamic identifiability” method (Wagener et al, 2003; 
with further embellishments in Choi and Beven, 2007).

Across those four decades, algorithmic notions of 
how to attain the optimum — here of estimates of the 
parameters α within the structure of the model M 
— had progressed towards computational exploitation 
of the biological notions of genetics and evolution, 
combining therein principles of intelligent adaptation 
and randomized experimentation, as, for example, in 
the algorithmic innovation of Duan et al (1993) and its 
successors. Significantly, things seem almost to have 
come full circle, driven by the changing and expanding 
capacity for observation, perhaps most tellingly 
conveyed in the increasing refinement, intensity, and 
extensiveness, of sampling along the space-time-
biogeochemical continua already alluded to in 
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Chapter 2.2 (for instance, Kirchner et al, 2004). 
Accordingly, the original impulse towards what is 
now the vast field of automated model calibration 
in its more customary forms may well be enjoying 
a renaissance, typified by the contemporary works 
of Mugunthan et al (2005) and Moore and Doherty 
(2006), both notably in respect of models described as 
“computationally expensive”, i.e., VHOMs.

Given this history — and it is the history of the 
persistent deficit in engaging VHOMs with field data 
in a context of discovery and learning — our next 
Challenge is expressed as follows.

Challenge # 7:

Under the expectation of massive 
expansion in the scope and volume of field 
observations generated by the Environmental 
Observatories, coupled and integrated with 
the prospect of equally massive expansion in 
data processing and scientific visualization 
enabled by the future environmental 
cyber-infrastructure, what radically novel 
procedures and algorithms are needed to 
rectify the chronic, historical deficit of the 
past four decades in engaging complex 
models (VHOMs) systematically and 
successfully with field data for the purposes 
of learning and discovery and, thereby, 
enhancing the growth of environmental 
knowledge?

This is redolent of the over-arching challenge for this 
entire White Paper (Challenge # 0).

Likewise, we should be reminded of Lewis’s pragmatist 
approach to the growth of knowledge, in particular, the 
pivotal element in his schema: of “acts which interpret 
data in terms of concepts”. Challenge # 7 is both more 
specific in its intent and central in the convergence 
and potential exploitation of the two principal 
innovations anticipated with the advent of the EOs. On 
the one hand, there is the cyber-infrastructure, which 
continues to extend the ambition of complex models 
beyond even VHOMs to the ever-receding horizon 
of virtual realities — the ultimate computational 
mechanizations of Lewis’s sets of concepts. On the 
other, a qualitatively more comprehensive suite of 
observing technologies is to be developed and installed 
(NSF, 2005), yielding what we shall refer to as high 
volume high quality (HVHQ) data. Challenge # 7 
is essentially about the algorithms, procedures, and 

support-software required to maximize the benefits 
from these two innovations, taken inseparably together.

Should anything be said of responses to Challenge # 7 
in respect of charting the future course of algorithms 
of mathematical programming, albeit those focused 
on the needs of calibrating environmental models? 
This, we confess, is beyond the scope of this White 
Paper. We shall merely presume that progress along 
that avenue will indeed be fruitful and unfold in 
ways continuing to benefit our systematic attempts at 
reconciling VHOMs with HVHQ data. Most notably, 
we should welcome the targeting of such developments 
at the estimation of very high-order vectors of model 
parameters (α) in addressing a generic problem we shall 
now call model structure identification.

Model Structure Identification: The Problem

There is another reason for the occurrence of a lack of 
model identifiability, not widely acknowledged until 
recently, which therefore, by reflection, extends the 
opportunity of significant novelty in future research.

A fixed model structure (M) populated by invariant 
parameters (α), or logical rules (as in IBMs), is a very 
strong presumption. The structure of a model is 
defined by the input, state, and output variables chosen 
to characterize the behavior of the modeled system, 
the logic of the inter-connections amongst all these 
variables, and the particular mathematical forms and 
rules of the various assumed interactions. To say that 
a model suffers from structural error/uncertainty, or 
conceptual error, is to indicate error or uncertainty 
in any one of these facets. For example, and most 
simply, we might judge that, except for an incorrect 
mathematical form for the interaction between two 
variables, all else about the model’s structure is correct. 
More profoundly, however, our view might be that 
significant and manifest attributes of the system’s 
behavior appear to attach to (unknown) variables 
entirely omitted from the model.

In introducing the notion of models as devices for 
hypothesis generation and screening in response 
to Challenge # 1 — and putting the same to work 
again in the preceding Chapter 2.6, in respect of 
diagnosing the nature of incidents impinging upon 
the ever-alert cyber-infrastructure (Challenge # 6) 
— we made use of the following dichotomy. When a 
model is constructed, certain pieces of the primary 
science bases are presumed known and included 
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in explicit mathematical form, i.e., the {presumed 
known}. Its complement, that which is acknowledged 
as not known, i.e., the {acknowledged unknown}, is 
therefore not included in the model’s structure, by 
definition — except typically under the lumped, and 
largely conceptual, stochastic processes customarily 
referred to as the system and/or observation noises. In 
the light of this distinction, the foregoing reference to 
structural “error/uncertainty” is not a matter of being 
pedantic. For there are important differences between 
discovering that the {presumed known} is in fact in 
error and discovering that something of significance, 
not arising from pure chance, resides in the uncertainty 
of the {acknowledged unknown}. This we recognize 
from Challenge # 6.

To presume such structural error/uncertainty is 
negligibly small is therefore a strong assumption, 
especially the greater the coverage in the model of 
the non-physical quantities along the biogeochemical 
continuum. Relaxing this assumption, therefore, to 
proceed from a prior structure for the model, Mprior, to 
an improved posterior model, Mposterior — and, crucially, 
by reference to a set of field data — we refer to as model 
structure identification. The work of Spitz et al (2001), 
on calibrating an ecosystem model for the upper, mixed 
layer of the ocean to the Bermuda Atlantic Time Series 
(BATS) observations, turns out to be exemplary in this 
sense. In their advance from an Mprior to an Mposterior, a 
new state variable is introduced (meso-zooplankton 
biomass); the forms of the interactions amongst three 
states (dissolved organic matter; bacterial biomass; 
and ammonium) are re-structured to provide an 
improved account of the microbial loop; and the ratio 
of chlorophyll-a to carbon in phytoplankton biomass 
— seemingly an invariant model parameter — is re-
expressed as a function of two state variables (Spitz et 
al, 2001).

Responding to the Problem: Conceiving of Model 
Parameters Not as Constants

A key to solving the problem of model structure 
identification is the idea that the parameters in a 
model may vary with time and space. Conceiving of 
parameters (α) in a model as entities changing with 
time — the notion that they might not actually be 
“constants” — and applying this outlook within the 
context of model structure identification, date back at 
least to the late 1960s (Young, 1978; Beck, 2002), if not 
earlier (Young, 1984). The logic of why structural error/
uncertainty in a model, which is axiomatic, implies 

the need to conceive of model parameters as capable 
in principle of variations in time, is an argument of 
rather more recent origin (Beck, 2002, 2005b), and 
will not be rehearsed herein. Likewise, algorithmic 
frameworks enabling computation of estimates of 
model parameters varying across time (and space), 
such as recursive estimation, Regionalized Sensitivity 
Analysis (RSA), and conventional optimization, are 
merely summarized and briefly illustrated in Box 2.

Ultimately, progress in acquiring knowledge of any 
system’s behavior is gauged by the extent to which 
the goal of a model populated by parameters that are 
indeed demonstrably constants, is achieved. Or, in 
the case of the IBMs of Ecology, similar progress will 
be evident when it can be concluded that constituent 
rules of individual behavior are invariably appropriate 
for all individuals for the entire extent and period 
of simulation (Grimm et al, 2005; Railsback, 2001). 
Suffice it to say that being able to estimate values for a 
model’s parameters that change with time and space 
is therefore indicative of that goal not having been 
attained (strictly speaking, the goal is essentially ever-
receding). This is informative evidence of: (i) the fact 
that the model’s structure contains flawed constituent 
hypotheses or suffers from significant omissions; 
and (ii) the manner in which those flaws might be 
rectified and omissions filled, as a part of the search for 
invariance in the model’s parameters and rules, hence 
provisional stability (or security) in the bits of the 
science base encoded in the model.

A Broader Context in Which to Deploy the Algorithms

There are higher levels, other than that of the basic, 
core algorithms of estimation, at which to build 
a coherent response to the problems of model 
structure identification embedded in Challenge # 7. 
Our expectation is of novelty arising precisely from 
such a greater breadth of perspective, with its scope 
for orchestrating a greater variety of approaches to 
problem-solving.

We begin by noting how our discussion hitherto 
has been dominated by one particular view of 
environmental models: that they are based on 
differential equations with the customary algebraic 
expression of the constituent hypotheses of which such 
models are composed. The role of models more typical 
of those labeled as originating in Statistics, such as the 
transfer functions of time-series analysis (Young, 1998) 
or wavelet analysis (Kumar and Foufoula-Georgiou, 
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Algorithmic Frameworks for Reconstructing Parameters Not as Constants

Discerning the signifi cance of the problem of model structure identifi cation, and of the role of 
estimating parameters that change with time and space in solving that problem, can be approached 
from several algorithmic points of departure.

Filtering Theory

The most obvious, from the 1960s onwards, has been the availability of mathematical fi ltering theory 
and recursive algorithms for state-parameter estimation. These were designed precisely for the 
purpose of estimating quantities sequentially, at each successive, discrete, observing point in time-
space, (ti, sj), for i = 1, 2, ..., ni and j = 1, 2, ..., nj. And their availability as solutions can fairly be said 
to have prompted conception and characterization of the (self-styled) problem of model structure 
identifi cation in the fi rst place (Beck and Young, 1976). The current incarnation of these algorithms of 
recursive estimation and fi ltering theory can be found in Lin and Beck (2007a), from which we take the 
following illustration of how reconstructing time-varying estimates of a model’s parameters, i.e., α̂(t), 
can be trained on the problem of model structure identifi cation.

We have access to HVHQ 
data such as those of Figure 2 
in Chapter 1 (for wastewater 
treatment), although here 
with reference to the 
behavior of a manipulated 
aquaculture pond, a posterior 
conceptual model of which 
is shown in Figure B2.1. 
Figure B2.2 demonstrates the 
performance of this model. 
The result can be thought 
of as but a “snapshot” in 
the ongoing process of 
reconciling a succession of 
evolving candidate model 
structures with a portion 
of the HVHQ data. At this 
particular juncture, the most 

signifi cant element of the posterior structure of Figure B2.1 is its incorporation of an account of the 
dynamics of duckweed and alkalinity-related features, omitted from the immediately previous prior 
model structure and provisionally determined as prime candidates for inclusion.

When reconciliation of that prior candidate model structure (Mprior) with the fi eld data was attempted 
— en route subsequently to the posterior structure (Mposterior) of Figure B2.1 — that “act” (sensu Lewis) 
yielded the parameter estimates of Figures B2.3 and B2.4. These attach respectively to the {presumed 

Typical block diagram for an a posteriori model structure (Mposterior) of nutrient, algal, and duckweed 
dynamics in a manipulated aquaculture pond: blocks represent state variables (x); model parameters (α) 
will typically be associated with the mathematical expressions describing interactions among the state 
variables (lines/arrows in the diagram). Reprinted with permission from Lin and Beck (2007a).

Figure B2.1
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which the serendipitous 
thought occurs in the dialog 
between Statistician and 
Marine Ecologist, as we have 
caricatured it in our discussion 
of Challenge # 2 (regarding the 
role of the cyber-infrastructure 
in facilitating basic scientifi c 
discovery). It is as though 
the structure underlying the 
behavior captured in the data 
is as that encapsulated broadly 
in the posterior structure, but 
demonstrably not so relative 
to that of the prior structure, 
some of whose constituent 
members — hypotheses, 
embedded in which are 
parameters — are shown 
as failing in the attempt to 
reconcile that prior structure 
with the data.

Estimates from a Recursive Prediction Error (RPE) algorithm for parameters logically attaching to 
the {acknowledged unknown} of the prior model structure (Mprior). Reprinted with permission from 
Lin and Beck (2007a).

Figure B2.4

Figure B2.5
Graphical scheme for representing a model’s 
structure, based (in part) on the schematic 
representation of the pharmaceutical system 
of Figure 4: state variables (x) are denoted 
as yellow nodes in this structure, while model 
parameters (α) are associated with the blue 
(or red) branches connecting the nodes to 
each other. Blue branches signal those facets 
(constituent hypotheses) of the model structure associated with model parameters found to be 
invariant and, therefore, robust and reliable in the face of the given test against fi eld observations. 
Conversely, red branches indicate signifi cant, non-random variability in what are presumed to be 
(ideally) constants and, accordingly, failure of the model structure, in specifi c, constituent parts.

known} and {acknowledged 
unknown} divisions of the 
relevant (prior) knowledge 
base. The estimates derive 
from a Recursive Prediction 
Error (RPE) algorithm (Lin 
and Beck, 2007a). For present 
purposes, all that needs to 
be said of these results is 
merely this: the trajectories 
of the reconstructed 
parameter estimates vary, 
both in terms of departure 
from their initial values and 
over extended intervals 
(in some cases), yet not in 
an utterly random manner 
incapable of sustaining any 
further interpretation. Such 
interpretation is genuinely a 
struggle. It is neither trivial 
nor aimless, in spite of such a 
simple prior model structure 
and a rich base of hypothetical 
knowledge surrounding 
possible forms of the posterior 
model, albeit rarely directed 
at description of the dynamics 
of duckweed (promotion of 
whose growth was not part of 
the deliberations in designing 
the experimental manipulation 
of the pond system).

The evidence of Figures B2.3 
and B2.4 is a part — and an 
important part — of what must 
be fed into the expression of 
Figure B2.1 from diagnosis of 
the failure of the prior model. 
Above all, the availability of 
such kinds of evidence on 
parametric variations (or 
invariance) should accelerate 
arrival of the moment at 

Match of behavior of posterior model structure (Mposterior) with fi eld observations of (a) algal biomass 
(chlorophyl-a) concentration and (b) dissolved oxygen concentration (DO). The reconstructed (unob-
served) state variable for duckweed biomass is shown as the dashed, magenta line in (a). Reprinted with 
permission from Lin and Beck (2007a).

Figure B2.2

Estimates from a Recursive Prediction Error (RPE) algorithm for parameters logically attaching to the 
{presumed known} of the prior model structure (Mprior). Reprinted with permission from Lin and Beck 
(2007a).

Figure B2.3
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To assist, even accelerate, the laborious process of proceeding from an obviously inadequate prior 
model structure (Mprior

) to a less inadequate posterior structure (Mposterior), what we should need, in 
general, is something such as that of Figure B2.5. Coloring of the branches in this visualization of the 
essential concept of model structure is quite deliberate: blue for invariant parameter estimates and 
therefore provisionally secure constituent parameters; red for deformation over time, as the given 
constituent members (hypotheses) of the structure buckle (fail). We know in principle how the RPE 
algorithm could generate these colors and their changes with time, which obviously would require 
some form of animated scientifi c visualization.

Regionalized Sensitivity Analysis and Dynamic Identifi ability

From an algorithmic point of departure quite different from that of fi ltering theory, and faced with 
the recalcitrant problem of a lack of identifi ability in calibrating hydrological models, Wheater et al 
(1986) sought yet another route to its obviation.

Specifi c segments, blocks, or windows in the empirical hydrological record are especially informative 
(information-rich) with respect to identifying the values of particular model parameters. Thus, 
instead of seeking to choose uniquely best, invariant, singular values for all of the parameters across 
the entirety of the empirical record, i.e., for all (observed) time, it could be more benefi cial to search 
for uniquely best, invariant, singular values for some of the parameters for some segments of the 
record, i.e., for some of the time. Thus was opened up the possibility — not exploited at the time — 
of the parameters desirably having different values at different times.

In a benchmark paper, and likewise faced with an inevitable lack of model identifi ability, Gupta et al 
(1998) came to the view that further progress in model calibration would only be achieved through 
radical changes of perspective. They proposed that algorithms of parameter estimation should 
henceforth be assigned the task of seeking to minimize structural error in the model at all (discrete) 
points in time. Further, under a Pareto perspective on the attaching optimality, if this meant different 
“best” values for the model’s parameters at different instants in time, so be it. They too had thereby 
opened up the prospect of entertaining parameters desirably having different values at different 
times (Gupta et al, 1998).

From an amalgam, in effect, of these ideas of Wheater et al (1986) and Gupta et al (1998), within 
the algorithmic framework of Regionalized Sensitivity Analysis (RSA), has emerged the dynamic 
identifi ability procedure of Wagener et al (2003). We know that such procedures can succeed 
when put to work on the problems of model structure identifi cation illustrated above in respect of 
recursive estimation and interpretation of data from a manipulated aquaculture pond (Chen and 
Beck, 2002).

Classical Optimization

Entertaining the possibility that a prior candidate model structure (Mprior) is actually populated 
with parameters that vary over a segment of discretized time-space implies a very high order for 

that model’s parameter vector, i.e., α(ti, sj). In particular, the more are the number of points in time 
and/or volumes in space to which the model (VHOMs) and fi eld observations (HVHQ data) refer, 
i.e., ni and nj are large, so the order of α(ti, sj) may, in principle, become very large. Thus derives 
the considerable signifi cance of having today (and in the future, more so) effective algorithms 
of mathematical programming, for example, that of Moore and Doherty (2006), for estimating 
values of very high-order parameter vectors in computationally expensive models. Given such 
freedom, the essential point is not to match simulated and observed behavior at any cost, such as 
chaotic variability and utter absurdity in the resulting estimates of all the many elements of α(ti, sj). 
Rather, recalling the kinds of evidence unearthed in Figures B2.3 and B2.4 above, it is to employ 
the available algorithms to interpret the variability in α(ti, sj) in order to modify the structure of the 
model, hence to arrive at the conclusion of a posterior model (Mposterior) in which no such variability 
in the parameters of that fi nal structure can be demonstrated as signifi cant. In short, the prior status 
of substantial variability in α(ti, sj) is systematically reduced to an essentially invariant vector α (in 
Mposterior).
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1997; Dohan and Whitfield, 1997; Whitfield and 
Dohan, 1997; Schröder and Seppelt, 2006), and data 
mining (White et al, 2005), has been barely apparent.

Similarly, little mention has been made of the 
framework of agent-based and individual-based models 
(IBMs; Grimm et al, 2005), essentially because matters 
of system identification have not been prominent in 
studies of field observations with such models. But 
let us recall our discussion elaborating upon Popper’s 
three Worlds as an extension of Lewis’s philosophy on 
the growth of knowledge (our over-arching Challenge 
# 0). At the very beginning of this Paper (in Chapter 
1.1), this was expressed:

[U]nderstanding — that is, assimilation of 
material into an appropriate mental structure 
(or mental model) — may derive increasingly 
from the belief that the virtual computational 
world (Popper’s World 3) has been founded 
upon true and correctly applied theories at 
the micro-scale and does not generate broad, 
macroscopic, qualitative predictions in 
obvious, absurd discord with whatever can 
be observed of the real thing in the physical 
world (Popper’s World 1).

Our present Challenge # 7 entails quintessentially this 
question: What should we do if there is such obvious, 
absurd discord? IBMs naturally embrace this tension 
between constituent rules cast at the micro-scale of 
an individual in a species and collective, macroscopic 
pattern, as Railsback (2001) notes. What then should 
be the systematic procedure for demonstrating 
inadequacy of a constituent rule, and unequivocally so; 
and how should that rule be revised and re-expressed 
in moving from a prior to a posterior candidate IBM 
in less absurd discord with the observed pattern of 
behavior in the field?

The more effective amongst the many possible 
responses to Challenge # 7, therefore, will be those 
benefitting from pooling the experience of these 
hitherto largely separate sub-disciplines and their 
respective algorithmic heritages, and promoting their 
cross-fertilization in the future. Such a view is indeed 
adumbrated in Clark and Gelfand (2006).

Departing in that direction, therefore, consider the 
following. The “acts” of system identification have 
conventionally been articulated within just the space 
of the system’s and model’s outputs, y, where the curve 
should be seen to pass through the dots. In this space, 

we know that the familiar theory-based models tacitly 
dominant in our discussion of discovery and learning 
can readily be found to suffer from a lack of model 
identifiability. Unambiguous interpretation of the data 
is not possible. The data-based models of Statistics, 
the antithesis thereof, are derived directly from the 
“data”, deliberately with no prejudices about the “set 
of concepts” that might in due course explain the data. 
They are well identified, using presumed objective 
methods of statistical inference. Yet customarily they 
are believed incapable of supporting a satisfactory 
theoretical interpretation of the observed behavior they 
demonstrably replicate.

That conventional perception is changing, driven on 
the one side by the ideas of  “data-based mechanistic 
modeling” of Young (1998) and Young and Ratto 
(2008). The essence of the dynamic behavior of the 
identified realizations of these models can frequently 
be encapsulated in simple macro-parameters (β), such 
as the system’s time-constant and steady-state gain. The 
essence of the various parts of the dynamic behavior of 
the theory-based models can similarly be encapsulated 
in identical terms. Thus, instead of supposing that 
theory will be entirely successfully confronted with 
data in the space of y, by way of evaluating the validity 
of that theory, features of the macro-parameters of the 
theory-based model can be juxtaposed with those of 
the data-based model, and conclusions drawn from 
this juxtaposition in the space of β (about how theory 
diverges from observation). Along this continuum of 
transformations of “information”

Theory D Theory-based model D 
Macro-parameters (β) D Data-based model D Data

the goal is to deduce useful insights about the 
relationship between theory and data, as reflected in 
their shared macro-parameters space (Lin and Beck, 
2007b).

This continuum of transformations will readily and 
convincingly appear distanced from the immediacy 
of the (very) public debate over climate change and 
hurricane intensity (Mooney, 2007). Yet Mooney 
structures his book around those characters (scientists) 
promoting empiricism over theory, who plead for 
“the data to speak for themselves”, and those who 
promote theory over empiricism. Thus he sculpts 
(with seemingly little literary license) the essential 
difficulty: of reconciling empiricism with theory, and 
the attaching computational complexity of VHOMs, 
about which such controversy has boiled. Theorists 
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standing at the point of “Theory-based model” in the 
above continuum; empiricists mustered at their “Data” 
station; and no apparent meeting of minds anywhere in 
between. In less literary terms, that essential difficulty 
has to do with the vastly different orders of magnitude 
of the data bases to which we have had access — the 
orders and samples of [u,y] being customarily small 
— and these VHOMs with high-dimensional state (x) 
and parameter vectors [x,α]. It is akin to looking at the 
world and trying to comprehend it through a pair of 
binoculars, with one eye-piece a microscope, the other 
a telescope.

Focusing more constructively, then, on the right-hand 
end of this continuum of transcriptions, Figure 6(a) 
(essentially the “Data”), tells us something about the 
topographic control on climate-induced inter-annual 
vegetation variability over the US (White et al, 2005). 
Figure 6(b), “mined” from the “Data” using analysis of a 
suite (or tree) of regression relationships, typifying thus 
a “Data-based model”, tells us something else. This we 
only but imagined earlier as “the archetypal Statistician 
interpreting the data, using the artful visualizations of 
the self-organizing maps of data-mining”, when we were 
speculating on the novelty to arise from introducing the 
environmental cyber-infrastructure in the context of 
Challenge # 2 (in Chapter 2.2). Now this manifestation 
of that “something else” should provoke novel insights 
of a kind not prompted by Figure 6(a), in the mind 
of the archetypal Terrestrial Ecologist (here), “who 
can proffer the hypothetical conjectures on why the 
correlation or curious anomaly is occurring”. Indeed, 
running our eye along the foregoing continuum from 
right to left, White et al (2005) themselves conclude that:

These findings suggest that the representation 
of vegetation dynamics in existing climate 
models, which do not incorporate [variability 
induced by topography], may be inadequate.

Insights of a similar nature from exploiting the 
continuum of transcriptions, in effect, are apparent in 
the work of Young and Parkinson (2002) on the global 
carbon cycle, as too in the work of Machu and Garçon 
(2001), who use wavelet analysis to enquire into the 
nature of phytoplankton distributions in the Agulhas 
Current off the south-western coast of Africa. Besides 
reconciling the extracted and distilled properties of 
models from rather different disciplinary traditions, 
such as those embodied in the “Macro-parameters (β)”, 
the key is that each transcription along the continuum 
should prompt questions that would otherwise not have 
been asked.

In a similar vein — in order to realize the “radical 
change of perspective” of their earlier work (Gupta et 
al, 1998) — Gupta et al (2008) propose that Lewis’s 
“acts” might more fruitfully take place in the richer 
domain of what they call signatures (pattern extracts) 
and indices (pattern properties), i.e., at one or two 
levels of encryption removed from the conventional 
space of y. In other words, model-referenced patterns 
are to be reconciled with data-referenced patterns, as 
a supplement to the more familiar “acts” of system 
identification in the space of y alone. The allusion, albeit 
inadvertent, to the “pattern-oriented” approach to IBMs 
of Grimm et al (2005) should not be allowed to pass 
without notice. And not least because Schröder and 
Seppelt (2006) are advocating bridging not just the one 
span of process-pattern (constituent micro-scale rule; 
collective macro-scale behavior), but also that of the 
heterogeneous traditions in modeling hydrology and 
modeling landscape ecology.

In the struggle to attain the broader perspective in 
responding to Challenge # 7 lies thus the genesis of the 
kind of synthesis across previously disparate schools 
of thought and forms of model that ought to make the 
whole of the procedure more than the classical sum 
of its parts. System identification is a forensic science 
in which claiming the elusive “truth of the matter” is 
unlikely to yield to dogged, blinkered application of but 
the one approach alone.

Supportive Software Environment: Accommodating 
VHOMs and HVHQ Data

As much as in its unforgettable expression of the 
“tyranny of scales”, so the NSF blue-ribbon committee 
on Simulation-based Engineering Science (SBES) 
identified “The Emergence of Big Data in Simulation 
and the Role of Visualization in SBES” as another of its 
six core issues (NSF, 2006). What drove the committee 
to this conclusion were issues primarily of handling 
uncertainty, as follows (NSF, 2006):

For example, uncertainty quantification, a 
key component of SBES, will require data sets 
many orders of magnitude larger than those of 
traditional deterministic computing.

Then there is the issue of interpreting the results 
of the simulation itself, a problem that can 
involve gigantic data sets.
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Moving back and forth along the continuum of 
transformations of information. Upper panel (a): 
“Data” on the topographic control of climate-induced 
inter-annual vegetation variability over the US. Lower 
panel (b): outputs from a “Data-based model” mined 
from the “Data” of (a). Reprinted with permission 
from White et al (2005).

(a)

(b)

Figure 6
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As we work to harness the accelerating 
information explosion, visualization will be 
amongst our most important tools.

Visualization research must continually 
respond to and address the needs of the 
scientific community. For example, the ability 
to visualize measures of error and uncertainty 
will be fundamental to a better understanding 
of three-dimensional simulation data. This 
understanding will allow the validation of new 
theoretical models, improve the interpretation 
of data, and facilitate decision-making. With 
few exceptions, however, visualization research 
has ignored the need for visual representation 
of errors and uncertainty for three-dimensional 
visualizations. We need to create an SBES 
visualization framework for uncertainty and 
to investigate new visual representations 
for characterizing error and uncertainty.

These views are broadly shared with those of the 
committee investigating the role and needs of sensor 
technologies within the Environmental Observatory 
initiatives, who observed that “modeling and 
visualization tools are critical” (NSF, 2005).

“Big data”18 occur prodigiously in applications of the 
algorithms of filtering theory and recursive estimation, 
with their various high-dimensional estimation error 
variance-covariance (and other) matrices propagating 
through the discretized time-space continuum — the 
kinds of uncertainties of which the SBES committee 
writes. The matrices must be propagated in addition to 
the like propagation of input, state, parameter, and output 
vectors. So why should visualization be highlighted 
in this manner in the context of Challenge # 7 and in 
solving, in particular, the problems of model structure 
identification? Our response is this: because learning, 
discovery, and the forensic science of model structure 
identification, are all about the highly condensed 
visual apprehension of the myriad diagnostic facets of 
the comparisons and juxtapositions entailed therein, 
especially in complex multivariable situations of HVHQ 
data and VHOMs. How indeed should we reconcile a 
VHOM such as that of Figure 4 with any corresponding 
HVHQ data of the kind shown in Figure 2, or those of the 
GIS maps of Figure 6?

18  The “big data” to which the SBES committee refers 
are clearly not identical to the “data” of Lewis’s schema 
for the growth of knowledge, since they are dominated by 
numbers generated from a computer, without having any 
direct association with the observed behavior of the real 
system.

We need hardly be reminded of the startling expansion 
over the past few decades in our capacity to simulate 
the behavior of systems, in theory, in ever more detail 
and completeness on the computer. Likewise, the 
substantial impact of the EOs and environmental 
cyber-infrastructure in expanding our technical 
capacity for observation, i.e., the volume and quality of 
data streams, is obvious. By comparison, there has been 
no advance in the capacity of the human brain to juggle 
with a huge entanglement of computational estimates 
and observed facts — no advance in our capacities for 
lateral thinking, as we have already said — in order to 
reconcile bundles of obscurely and obliquely discerned 
anomalies, where data and theory seem to diverge, and 
not through the action of spurious chance occurrences. 
Imagine what is to be supported: reconstruction 
in a computational world of a complex assembly of 
experimental tests of multiple, constituent hypotheses; 
which hypotheses are of varying prior strengths, 
irreducible and impossible to isolate clinically from 
the whole for examination one by one as singlets; and 
whose observable causes and consequences all interact 
with each other.

What is called for, above all, is succinct visual 
representation of the structure of the model: probably 
not along the lines of the animation software of Figure 
3; more along the lines of animating the branch-node 
network of Figure 4; and with the succinctness of the 
compression achieved through the enormous visual 
complexity of color, movement, and animation of the 
model’s structure. Visualization is necessary just as 
much for the “acts” of system identification as it is 
(already) for the “data” and for the “set of concepts”. It 
may take the form of that for the ELAM of Goodwin 
et al (2006) or the IBMs of Grimm et al (2005). It may 
be as familiar as the computer graphics of games, 
films, and the scientific reconstruction of history and 
the imagination of future threats (for the television 
programs of the History and National Geographic 
channels, for instance). In Box 3, however, an argument 
is developed for taking the conceptual visualization 
introduced in Box 2 and propelling it towards what we 
can already find in the software domain of molecular 
graphics.

The need has been long-standing: for the kind of 
software environment enabling rewiring of the 
constituents within the whole of the model, almost as 
quickly and easily as the serendipitous thought surfaces 
in the brain; for support of the “tinkering paradigm” of 
the on-line dialog between our archetypal Statistician 
and Marine Ecologist (of Challenge # 2 above); and for 
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Structural Change

Animating Flexure and Collapse of Model Structure
in Lewis’s Acts of System Identifi cation

In Box 2 the conceptual branch-node network diagram of Figure B2.5 conveys an “artist’s impression” of a 

model’s structure, representing there a prior candidate model structure (Mprior) with its apparent failings, 

as a step en route to that of an improved posterior structure (Mposterior), all in the overall process of model 

structure identifi cation. In discussing (in Chapter 2.6) the ever-alert environmental cyber-infrastructure, 

poised to enact adaptive sampling and faced with acknowledging the associated need of an “adaptive 

model” (in response to Challenge # 6), we introduced the idea of a model whose structure would change and 

evolve with time, from M(t -) to M´(t +). The threads of these two arguments establish a sense of fl uidity in the 

structure of a model, which we shall elide with the ideas of movement, motion, and therefore animation. 

Figure B3.1 realizes three snapshots in time (t) of such motion, or structural change in the model.

Alternatively, supposing our understanding of the behavior of the given environmental system could be 

resolved to some greater degree of refi nement, the three snapshots of Figure B3.1 might be subsumed as 

merely a sequence of predominant facets of some more complete model, such as that of Figure B3.2 (just as, 

indeed, in the pictorial representations of the collapse of coastal ecosystems in Jackson et al, 2001). Coloring 

of the branches of Figure B3.2 follows the previous logic of that introduced in Box 2: with blue representing 

a secure, confi dently supported constituent hypothesis, with relatively little uncertainty attaching to the 

associated model parameter estimates; and red signaling the opposite, i.e., a constituent hypothesis that 

has been stressed to the point of failure in the act of reconciling the candidate structure with the data. 

Animation would permit changes of color over time. And to color could be added the dimensions of fl exure, 

deformation, and oscillation in these branches pinning together the nodes (state variables) of the structure.

The purpose of Figure B3.2 in the present argument is to establish some conceptual complements of Figure 

B3.1. Given the two, and the previous liberal use of these metaphors in Environmental Science (Beck, 2002), 

little further imagination is needed to proceed to Figure B3.3, as found in the Biomedical Sciences. If the 

two facets of animation and visualization in Figures B3.1 and B3.2 could be brought together in realizations 

such as those of Figure B3.3, then surely it could also be that the software platforms of molecular graphics 

have a role to play in model structure identifi cation in responding to Challenge # 7. For we already know that 

one of the algorithmic frameworks of Box 2, that of recursive estimation and the RPE algorithm, in particular, 

generates streams of digital information — on parameter estimates, variance-covariance matrices, and the 

like — suffi cient to color and animate Figure B3.2 in a systematic manner, as its attaching “set of concepts” is 

reconciled with the “data”, time-frame by time-frame.

Now imagine our colored and animated model structure as a three-dimensional object on the computer 

screens of our archetypal Statistician in city offi ce and Marine Ecologist aboard ship at sea. And suppose 

the cyber-infrastructure enables them both simultaneously to freeze a frame in the fi lm, arresting it at the 

point of detecting a red buckling to the rear of the model structure, rotating the object, and cutting out the 

buckled portion of the structure for closer inspection. Imagine, in fact, Figure B3.4. We ought indeed then to 

have the beginnings of the “tinkering paradigm” called for in our earlier response to Challenge # 2.

Structural change: snapshots for three instants in 
time capturing evolution in the structure of the 
model. Over time, from one snapshot to another, 
it appears some constituent parts of the model’s 
structure have fallen away, from signifi cance 
into insignifi cance, while others, once considered 
insignifi cant (not worthy of inclusion in the model’s 
structure), have arisen to assume considerable, if 
not dominant, signifi cance.

Figure B3.1

t -

t

t +
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Figure B3.2
Towards model structure identifi cation: three-dimensional representation of the model structure (previously depicted merely in 
two dimensions in Figure B2.5 of Box 2).

Figure B3.3
The benefi ts of serendipitous 
happenstance: image downloaded in 
2004, dealing with the simulation of 
changes over time in the structure of a 
biological molecule. Citing authorship of 
this fi gure has proven challenging. It can 
no longer be located on the web.

Towards model structure identifi cation through animation of fl exure and collapse of model structure: (a) frozen frame of the 
animation as the analyst fi rst detects a red web of faulty behavior to the rear of the three-dimensional model structure, as the 
model is in the process of being reconciled with a recorded span of fi eld data; (b) same frozen frame as (a) but rotated in the 
three-dimensional space of the visualization of the model’s structure in order to reveal more clearly the failing constituents 
(hypotheses) of the model’s structure.

Figure B3.4

(b)

(a)
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the kinds of scientific visualization that will enable the 
serendipitous thought to occur sooner rather than later. 
Much of what is called for in responding to Challenge 
# 7 is likely to depend on an essential element of such 
serendipity, something which by definition defies 
full automation and systematization in any form of 
environmental cyber-infrastructure.

2.8 Predictive Science and Uncertainty

Everything, technically, is uncertain: u, M, α, and y. 
And according to the SBES committee, uncertainty is 
clearly a significant matter, even in the more secure, 
“artificial”, constructed world of engineering (the built 
environment). Given this, the important question 
is not so much that we should be concerned to take 
account of uncertainty, for once was the time when 
technically we were analytically and computationally 
largely unable so to do, but that we should be able to 
establish when such uncertainty, be it great or small, 
might be important. Looking back, it is important for 
the uncertainty and ambiguities in explaining past, 
observed behavior to be reduced to insignificance, 
expunged, and the explanation rendered as founded 
upon just the singular “set of concepts” alone. Peering 
ahead, it is important to be able to discern where 
forecasts of possible future patterns of behavior in the 
system can be relied upon, and where not.

As we introduce our next grand challenge, aligned 
with the second of our textbook problems, of  “given 
M and u find y”, but not divorced from the prior 
problem of “given u and y find M”, our need is to 
pinpoint aspects of accounting for the various facets 
and types of uncertainty for which no solutions are yet 
readily apparent. For this — shortly to be expressed 
as Challenge # 8 — our focus will be on uncertainty 
in knowledge and its consequences with respect to 
making statements about future behavior. Challenge 
# 10, which is closely related, will subsequently be 
addressed to those consequences in the more pragmatic 
context of decision-making and decision support in 
environmental management. The former views the 
issue of prediction from the perspective of the scientist 
as stakeholder, the latter from the perspective of the 
policy-maker as stakeholder.

Moorcroft’s Question

In his review paper, Moorcroft (2006) asks: “How Close 
Are We to a Predictive Science of The Biosphere?”. The 
science plan for NEON released in September 2006 
observes that “[m]oving ecology to a predictive science 
at the regional to global scale will require a coordinated 
program of theory development, testing, and refining” 
(NEON, 2006). Becoming a “predictive science” is 
thus a noble, widely shared goal; and its attainment, in 
respect of such massively complex, large-scale systems, 
must rest upon achieving what the community of peer 
scientists will judge to be secure, reliable models.
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Moorcroft’s response to his own question, which 
touches upon a number of the grand challenges in this 
White Paper — from the role of models in the process 
of core scientific discovery, i.e., from Challenge # 1, 
onwards — entails the following:

That there be no obvious, absurd discord 
between the “data” and the “set of concepts”, 
echoing thus all of the preceding discussion 
under Challenge # 7.

The “data” for Moorcroft will be an eclectic synthesis of 
cross-scale fragments, blocks, and patches of observed 
behavior spanning the time-space-biogeochemical 
continua (echoing thus the discussion of ecoinformat-
ics in Jones et al (2006) under Challenge # 2). His “set 
of concepts” are to cover subgrid-scale heterogeneity in 
the community of plants and their cross-scale dynam-
ics. Omission hitherto of these features, he argues, has 
been responsible for (Moorcroft, 2006)19

our current understanding of biosphere-
atmosphere feedbacks [being] a collection of 
interesting, but largely untested, hypotheses 
for the future state of terrestrial ecosystems 
and climate.

But as we now know from the extensive discussion of 
the challenges of reconciling complex VHOMs with 
the anticipated yield of HVHQ data from the EOs, the 
archetype of the single curve of the model traveling 
demonstrably through the dots of the data can 
conceal a host of ambiguities and uncertainties, hence 
a plurality of interpretations. As Moorcroft (2006) 
expresses it:

[A]lthough most models can replicate inferred 
patterns of potential vegetation and seasonal 
to interannual patterns of productivity, they 
diverge from each other significantly in 
their predictions of ecosystem composition, 
structure and functioning under novel climates.

And in this he epitomizes the challenge we are 
approaching.

If the uncertainties attaching to the various models 

19  At the scale of the spatial grids presently employed 
in models of the global atmosphere, biological cover on the 
earth appears as the uniform, monotone “canopy as big-leaf” 
(Moorcroft, 2006).

as a result of replicating (uncertain) past observed 
behavior had been evaluated — for this is not 
disclosed in Moorcroft’s discussion — and then 
accounted for in the predictions, the significance, or 
otherwise, of the divergence amongst the predictions 
(and of the models) could have been established. 
Furthermore, once qualified by such an account of 
the propagation of this uncertainty into the bundle 
of predictions, discerning where divergence is 
statistically significant or not should be revealing of 
the points of relative strength and weakness amongst 
the constituent hypotheses in the competing models. 
Accordingly, we can see how solving our two textbook 
problems, of identification and prediction, are in this 
way intertwined (Beck, 1987).

Looking to explanation of the past, how then should 
we judge whether the predictive science base is 
unblemished, without flaws? Looking to the future, 
how do we insure use of our forecasts against the 
propagated consequences of these blemishes and 
flaws, in order to be in any way confident in making 
statements about behavior in the future, especially 
behavior radically different from that observed in the 
past? For it is towards this objective — of being reliable 
in inferring such novel behavior — that becoming a 
predictive science is strongly inclined.

Sound Science

“Being reliable” is indeed the key — as may also be 
reiteration of our call (in Chapter 1.1) to professional 
philosophers of science to become involved in 
the particular challenges of developing models in 
Environmental Science.

On the one hand, adhering to what is understood 
as the paradigm of “sound science” (Fisher, 2007), 
uncertainty is, in principle, capable of being eliminated 
in due course, i.e., uncertainty in our knowledge bases 
is essentially a transient phenomenon. According to 
Funtowicz and Ravetz (1990), reliability in the status of 
the relevant science would evolve through the following 
stages:

from “no opinion” with no peer acceptance;

through an “embryonic field” attracting low 
acceptance by peers;

“competing schools”, with medium acceptance;
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a “theoretically-based model” accepted by “all 
but rebels”;

and on, in the end, to an “established theory” 
accepted by “all but cranks” (expressions 
quoted are those of Funtowicz and Ravetz).

In our domain of formal, computational modeling, this 
progression might be mirrored as:

from perceived correlations within the data, 
derived from applications of techniques such as 
data mining, self-organizing maps, regression 
analysis, and the like;

to the sets of rules of fuzzy logic and Bayesian 
nets;

lumped-parameter ordinary differential 
equations, or several such model structures 
(with/without time-varying parameters);

to culmination in sets of partial differential 
equations, with invariant parameters (without 
stooping to the expedient of estimation through 
model calibration).

In this climax a single and secure “set of concepts” 
should unquestionably have been achieved (in Lewis’s 
terms).

In the latter stages, what drives matters is the quest 
for successively eliminating model parameters as 
temporary “parking places”, as it were, for accounts of 
behavior regarded for the time being as too uncertain, 
too variable, too immature, or lying outside the 
“scale window” of what can be included in the model 
(Lermusiaux et al, 2006b). This is just as Moorcroft 
(2006) anticipates:

The plant functional types represented 
within coupled DGVMs [Dynamic Global 
Vegetation Models] have fixed traits, such as 
their maximum photosynthetic rate and their 
patterns of carbon allocation between leaves, 
stem and root tissues. By contrast, empirical 
studies of terrestrial ecosystem responses to 
climate change have documented widespread 
evidence of plant acclimation to elevated levels 
of CO2. [emphasis added]

The trait (parameter), currently treated for expedience 
as invariant, might better be regarded as temporally, if 
not spatially, varying, unless and until that parameter 
can be replaced by a more mature model, with a 
higher resolving power, wherein the expedient trait is 
acknowledged as crudely approximating interactions 
amongst several state variables at the more refined 
level of understanding.20 This quest, as Popper puts it, 
is “unending” (Popper, 1976) — notwithstanding the 
ambition of enterprises such as the Human Physiome 
Project (Hunter and Borg, 2003), in descending to 
the ever smaller, or Earth System Analysis, tending 
towards the opposite end of the scale.

Current DGVMs, we could say, are subject to 
structural error/uncertainty, or epistemic uncertainty, 
i.e., uncertainty in the science and sets of concepts 
underpinning the model. If they were to attain 
the status of the predictive science in Moorcroft’s 
question, the blue-ribbon committee on Simulation-
Based Engineering Science (SBES; NSF, 2006) would 
nevertheless lead us rightly to expect them still to 
be subject to aleatory uncertainty — uncertainty, 
that is, attaching primarily to the parameterization 
of an otherwise agreed structure for the model, 
beyond dispute.21 Until such a status is attained, what 
computational account (rhetorically) is to be given of 
the structural error/uncertainty?

At bottom, adoption of the sound-science paradigm 
expects progression in but one direction, with no 
substantial setbacks, except when the relevant science 
undergoes a Kuhnian shift of paradigm (Kuhn, 1962).

Deliberative Problem Solving

On the other hand, there is the paradigm of “deliberative 
problem solving”, in which epistemic uncertainty 
is considered ineluctable (Fisher, 2007). This can be 
portrayed as having much of a Bayesian spirit about it. 
Beginning at some point in an iterative cycle, we:

20  The “mixing-layer depth factor”in ocean science 
models seems likewise a candidate expedient, subject to tem-
poral variability, and capable in principle of more satisfac-
tory representation (Lermusiaux et al, 2006b), just as was the 
ratio of chlorophyll-a to carbon in phytoplankton biomass in 
the previously quoted work of Spitz et al (2001).

21  To be clear about the use of terms here, the word 
epistemic is understood as “of, relating to, or involving 
knowledge or the act of knowing”, whereas aleatory denotes 
“dependent upon chance, luck, or an uncertain outcome”. 
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(i) identify some key sources of uncertainty;

(ii) explore the nature of experiments 
designed to reduce these — at a mature 
stage, after several cycles, some such 
designs of experiments will be using 
models for this purpose (just as we have 
seen in Chapter 2.6; Challenge # 6);

(iii) quantify and record the uncertainty 
attaching to the model (M), both 
parametric and structural, as it is 
reconciled with the resulting data;

(iv) account for the propagation forward 
of this posterior model uncertainty in 
the making of predictions (and come 
to a current view on the problem being 
solved); and

(v) rank the sources of uncertainty 
compromising the reliability of those 
predictions — hence, to embark on the 
next cycle.

The cycle is that of identification-prediction-
identification-prediction, and so on. Through it runs 
the continuous thread of accounting for uncertainty.

It is possible, in principle, for confounding data 
to cause the posterior model uncertainty, after 
identification, to be greater than that with which 
any given iteration began. System identification, as 
we have discussed it in response to Challenge # 7, 
assumes now not merely the goal of explaining past 
behavior without ambiguity, but also the purpose of 
mapping the loci and extent of that which is more or 
less uncorroborated in the model. The resulting map 
is a faithful “fingerprint” of any and all the distortions 
wrought in the model as it is reconciled with the data. 
And this fingerprint of uncertainty determines, in part, 
the reliability of the predictions generated from the 
model (Beck, 1987).

It is not that this second paradigm does not seek utter 
clarity in explanation and prediction. Rather it seeks 
quality in this quest, presuming uncertainty cannot be 
made negligible, hence eliminated from consideration, 
not even when having attained the partial differential 
equations that are the target end-points of the sound-
science paradigm. In fact, since this is precisely the 
argument Funtowicz and Ravetz (1990) wish to make, 

care must be taken not to make their thinking captive 
of just the sound science paradigm. Furthermore, all 
of us would want to see our science progress from no 
opinion to a fully fledged theory. If our nascent models 
are expressed in the rules of fuzzy reasoning and 
Bayesian nets, for example, uncertainty is axiomatic. 
But somewhere along the line of the sound science 
paradigm — for it is unclear whether there are the 
procedural and algorithmic means for graduating these 
forms of nascent models systematically into the forms 
of ordinary differential equations — models emerge 
without any formal account of uncertainty.

Being open about such uncertainty should be 
celebrated: in illuminating where our explanations 
and predictions can be trusted and in proceeding, 
then, in the cycle of things, to amending their flaws 
and blemishes. And so we come to expressing our next 
grand challenge.

Challenge # 8:

Recognizing the inevitably flawed and 
uncertain conceptual foundations of 
many environmental models — while 
acknowledging the possibility of natural 
features of biological acclimation, even 
evolution, over a longer-term horizon, 
especially in response to the introduction of 
invasive species, and the high likelihood of 
continual adaptation in the behavior of many 
types of environmental system — how are 
structural error/uncertainty and structural 
change in these models to be identified, 
quantified, rectified, and accounted for (in 
the propagation of prediction errors and the 
making of decisions)? What new schemes of 
generating environmental foresight will be 
needed to cope with these challenges?

What, in fact, must go into making environmental 
science a predictive science (a strong form of 
“environmental foresight”)? What might be the role of 
the Environmental Observatories, and the data they are 
to generate, in facilitating this?

Computational Analyses of Uncertainty and Sensitivity

In 2003, scientists and engineers from a unusually 
large number of US federal government agencies 
came together for a Workshop on “Uncertainty, 
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Sensitivity, and Parameter Estimation for Multimedia 
Environmental Modeling” (Nicholson et al, 2004). 
Uncertainty, whose analysis had historically been tied 
to the making of predictions, was thereby coupled 
to parameter estimation, i.e., to the prior process of 
identifying the model in the first place. This, then, 
was an embodiment of the Bayesian spirit of the 
identification-prediction cycle — recognition too of 
the role of past observations (and their uncertainties) 
in influencing the propagation of uncertainty in 
predictions of behavior in the future.

The titles of some of the programs prominent under 
the inter-agency collaboration hosting the Workshop 
convey much the same spirit: specifically, that on Joint 
Universal Parameter IdenTification and Evaluation of 
Reliability (JUPITER) and its manifestations in the peer-
reviewed literature (Doherty and Johnston, 2003; Poeter 
and Anderson, 2005; Gallagher and Doherty, 2007). 
Given widespread acceptance of this Bayesian outlook 
today — indeed, its prominence in some fields, notably 
Hydrology (source of the procedure of Generalized 
Likelihood Uncertainty Estimation (GLUE; Beven 
and Freer, 2001)) — the intellectual effort originally 
invested in making such a connection between prior 
identification, uncertainty, and subsequent prediction 
(Beck, 1987) seems now superfluous.

Across the disciplinary domains germane to the EOs, 
the most expansive penetration of applications of 
the relevant computational methods of Uncertainty 
Analysis and Sensitivity Analysis (UASA) to higher-
order, computationally expensive models is clearly 
apparent in Hydrology and the Ocean Sciences 
(Lermusiaux et al, 2006b). It is especially prominent in 
matters affecting systems of groundwater: in respect of 
bioremediation of contaminant plumes (for example; 
Mugunthan and Shoemaker, 2006); and in accounting 
for the exceptionally long-term, future behavior of such 
segments of the environment in the vicinity of storage 
facilities for high-level radioactive wastes, for example, 
over the scales of 103 and 106 years (Helton et al, 2006; Ye 
et al, 2007; see also the reference textbook of Saltelli et al, 
2000).

From a slightly different conceptual and algorithmic 
heritage, but nevertheless heading towards the 
handling of uncertainty in very high order models, 
are some contemporary extensions of the seminal 
work of Hornberger and Spear (1981) on Regionalized 

Sensitivity Analysis (RSA)22. That sub-population of 
candidate parameterizations of the model, screened 
out under gross uncertainty, as generating acceptable 
matches of qualitative, subjective experience of past 
observed behavior (the signature feature of RSA), 
constitute the sample of candidate parameterizations of 
the model with which to generate forecasts of behavior 
in the future (every bit as much a characteristic feature 
of the Bayesian outlook). The extensions of RSA, 
currently tailored to an ecological foodweb model of 
modest order (Osidele and Beck, 2003, 2004), are to 
be incorporated into the FRAMES software system 
for human and ecological risk assessment constructed 
around a multi-media model (3MRA; Babendreier and 
Castleton, 2005), unquestionably a model meriting the 
assignation of being a VHOM.

To summarize, the ambition of attaining here 
computational facility in addressing and visualizing 
uncertainty in the very highest orders of models, 
is clearly shared with the recommendations from 
the NSF’s blue-ribbon committee on Simulation-
Based Engineering Sciences (NSF, 2006). Likewise 
broadly shared, of course, is the interest in having 
computational efficiency accompany computational 
facility, especially in the now dominant sampling-
based schemes of accounting for uncertainty23, as 
reported upon in Helton et al (2006), appropriately 
enough in a journal on reliability engineering. There 
is also a self-declared aim (Gallagher and Doherty, 
2007) that developments in the enabling software of 
computational UASA become generic, i.e., applicable 
whatever the source of the model and, we would 
commend, compatible with protocols such as OpenMI 
(of which mention was made in Chapter 2.2).

Given a model M, even a very high order model, 
we may conclude it is possible to compute the 

22   To which GLUE, as well as the set-membership 
approach of Keesman and van Straten (1990), owe much of 
their inspiration.

23  Two decades ago the field of uncertainty and 
sensitivity analysis was greatly concerned to compare the 
performances of first- and second-order analyses of error 
propagation with those of sampling-based schemes (Beck, 
1987). Today those approximate methods appear prominent 
primarily in but the prior analyses of model identifiability 
(and experimental design) discussed above in Chapter 2.6 
(for example, Brun et al, 2001; Omlin et al, 2001), with the 
notable exception of Gallagher and Doherty (2007), who 
report on a comparative study in the analysis of uncertainty 
using both a first-order error analysis and a Markov Chain 
Monte Carlo (MCMC) sampling procedure.
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uncertainties attaching to that model’s parameters 
(α), as a result of reconciling the model with the data, 
and compute the consequences thereof in terms of the 
uncertainties attaching to the model’s predictions (y). 
Hence, in principle, the specific loci of the strengths 
and weaknesses in that complex web of explanatory 
hypotheses, as well as in the bundle of predictive 
statements, can be illuminated, not left concealed, 
with therefore latent consequences. Should this help in 
addressing the problem of the (historical) impotence of 
the field data in discriminating amongst those models 
and their constituent hypotheses that are to be relied 
upon in making predictive statements about possibly 
radically different types of behavior, and those that are 
not? It ought.

Put less technically, more philosophically, and in the 
words of Funtowicz and Ravetz (1990): is exploration 
of the future to be dogged (or enhanced) by a plurality 
of plausible, candidate models under a regime of 
competing schools of scientific thought? In fact, could 
those candidate models be supported and promoted 
even as sharply contradictory certainties? Whatever the 
answers to such questions, the computational capacity 
of accounting for the propagation and modulation of 
uncertainty through the identification-prediction cycle 
is ready to be put to work.

Foresight: Coping with Structural Error/Uncertainty 
and Structural Change

Until environmental models attain membership of 
the set of predictive sciences, for they are yet falling 
short of this goal, what computational account is to 
be given of the structural error/uncertainty in them, 
in exploring possible patterns of behavior in the 
future? How are we to cope with such uncertainty 
in our conceptual knowledge base? When making 
predictions, what should be done about the recognized 
inadequacies of the fixed, macroscopic traits currently 
assigned to the behavior of vegetation in Dynamic 
Global Vegetation Models (Moorcroft, 2006)? Before 
delineating the beginnings of answers to these already 
substantial enough questions, let us ponder something 
of their still grander implications and origins.

In a contribution to an early text on evolutionary 
economics, Peter M Allen, a theoretical physicist who 
had worked with Nobel-laureate Prigogine on matters 
of complexity and self-organization in the 1970s and 
1980s, took stock of his perspective on models and 

prediction in environmental science, following that 
experience. In the gap between the computationally 
tractable known (the model) and the truth (reality) lies 
the difference, as he would argue, between the behavior 
of mechanical and evolutionary systems (Allen, 1990):

[I]f the world is viewed as some kind of 
‘machine’ made up of component parts 
which influence each other through causal 
connections, then instead of simply asking how 
it ‘works’, evolutionary theory is concerned 
with how it got to be as it is.

The Newtonian paradigm was not about this. 
It was about mechanical systems either just 
running, or just running down.

The key issue is centred on the passage 
between detailed microscopic complexity of 
the real world, which clearly can evolve, and 
any aggregate macroscopic ‘model’ of this.

The central question which arises is that in 
order even to think about reality, to invent 
words and concepts with which to discuss 
it, we are forced to reduce its complexity. We 
cannot think of the trillions of molecules, 
living cells, organisms, individuals and events 
that surround us, each in its own place and 
with its own history. We must first make a 
taxonomic classification, and we must also 
make a spatial aggregation.

[I]f, in addition to our basic taxonomic and 
spatial aggregations, we assume that only 
average elements make up each category, and 
that only the most probable events actually 
occur, then our model reduces to a ‘machine’ 
which represents the system in terms of a set of 
differential equations governing its variables.

But such a ‘machine’ is only capable of 
‘functioning’, not of evolving. It cannot 
restructure itself or insert new cogs and 
wheels, while reality can!

What Allen imagines is the possibility of the structure 
of the web of interactions, of which we conceive in our 
models, dissolving, as it were, and then re-crystallizing 
into some other structure, with a different number of 
states and parameters and different inter-connections 
between the states.
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The following are physical manifestations of Allen’s 
conceptual imagination: the acclimation of vegetation 
to future changes in climate (Moorcroft, 2006); historic 
structural change charted in the foodwebs of estuarine 
and coastal ecosystems (Jackson et al, 2001) — just as 
already imagined in visualizing a model’s changing 
structure in Box 3 (Chapter 2.7); and the structural 
adjustments to the same in river and lake ecosystems 
as a result of the introduction of exotic species (Strayer 
et al, 1999; Matthews et al, 2002). They are not matters 
of evolution in its literal sense, for what Allen went 
on to ask was: can we discover the rules by which the 
system will re-structure itself? But they are significant 
problems encountered in the practice of environmental 
science, and they are germane indeed to the expression 
of our present Challenge # 8.

Conceptual error, or structural error/uncertainty in the 
model, may be thought of as a measure of the extent to 
which the expression of what is “known” diverges from 
the “truth”. To reiterate from Box 2 of Chapter 2.7, it 
may be considered to have two important, significantly 
different dimensions: of error in the {presumed 
known} and of uncertainty about the {acknowledged 
unknown}. Addressing it as a matter of significance 
has been gaining ground in recent years, and yet 
again, notably in Hydrology, in the works of Neuman 
(2003), Poeter and Anderson (2005), Beven (2005), and 
Refsgaard et al (2006) (as well as Borsuk et al, 2004). 
Broadly, these all assume a plurality, if not a multitude, 
of candidate models, Mi, i = 1, 2, ..., m, to each of which 
can be assigned a probability — in the present — of 
that model encapsulating the truth of the matter. This 
probability will vary with time in the Bayesian spirit of 
the identification-prediction cycle. At any point in the 
cycle, models Mi, i = 1, 2, ..., m, with the accompanying 
distribution of likelihoods of encapsulating the truth, 
can be employed computationally in generating a 
sample of multiple bundles of predictions of possible 
behavior in the future. Our Paper has already touched 
upon this in respect of matters of adaptive modeling, 
adaptive sampling, and Environmental Observatory 
operations in the domain of the Ocean Sciences (under 
Challenge # 6 in Chapter 2.6; Lermusiaux et al, 2006a).

There is a bigger picture here, however. Most of the 
foregoing has recently been brought together under 
the heading of a Bayesian Hierarchical Modeling 
framework, wherein the notion of hierarchy manifests 
itself as follows. Given the data from the EO, a posterior 
model structure (Mposterior) can be obtained given Mprior; 
whereupon, given Mposterior, posterior estimates of 

the model’s parameters are computable; so that then 
(ultimately) armed with Mposterior and these posterior 
parameter estimates, predictions of future behavior 
(as outputs y) are calculable (Liu and Gupta, 2007). All 
this, these authors from the domain of Hydrology label 
“data assimilation”, subsuming therein much of what 
has gone before under Challenge # 7, the discussion 
of this present Challenge # 8, and a good deal of what 
is to come in the next section in respect of Challenge 
# 9. We shall choose there, however, to interpret the 
assimilation of data rather differently.

Looking back, with a grasp now of what it means to 
have a predictive science, we may conclude that what 
we practise as environmental modelers has yet to attain 
that noble goal. Looking back too, with an appreciation 
of the perhaps paradoxical illumination brought with 
analyses of uncertainty, the intent of these indicative 
lines of response to Challenge # 8 is this: to make 
the utmost, under uncertainty, of the diversity of 
candidate models thriving under the competing 
schools of thought, presuming that within the span of 
the distribution of these models lies somewhere the 
truth. Attempts at detecting, gauging, quantifying, 
circumventing, or reducing the gap between the model 
and the (unknowable) truth come primarily under the 
preceding Challenge # 7. Faithfully accounting for the 
consequences (for model-generated predictions) of this 
gap in our knowledge, with all its flaws and blemishes, 
is a matter of the current Challenge.

Absent is the notion of supposing the gap will 
eventually be eliminated, notwithstanding its power 
of motivation. Not for nothing did Popper entitle his 
intellectual auto-biography an unending quest. There 
will always be a need for generating foresight — a less 
strong form of “prediction” — under the presumption 
of structural error/uncertainty, within which may 
reside structural change of a kind approximating that 
imagined by Allen (1990). The manifesto of Beck (2002) 
(in shorter form, in Beck (2005b)) is one perspective on 
the possible forms of response to the facet of foresight 
within Challenge # 8. That manifesto was inspired in 
no small measure by Allen’s description of his problem; 
and it embraces approaches — part computational, part 
conceptual — exploiting the idea of parameters (α) as 
stochastic processes, i.e., varying through time-space.
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In 2010 half a century will have passed 
since Kalman published his seminal paper 
on a new approach to signal filtering and 
prediction (Kalman, 1960). Time enough, one 

might suppose, for real-time information processing 
and forecasting to have become a commonplace in the 
environmental sciences. It has not; and it is especially 
important to understand why this has been so. For 
the potential and scope of the EOs and accompanying 
environmental cyber-infrastructure are substantial, in 
precisely the domain of exercising “functions in real-
time”.

3.1 Assimilating Data and Processing 
Information in Real-time

Environmental Science did not want for early adopters 
of these algorithms of Kalman (and of recursive 
estimation more generally), themselves born of the 
then urgent needs of aerospace engineering. Real-
time forecasting and control in hydrological and 
water resources systems, for both surface and ground 
waters, as well as the municipal water and wastewater 
treatment facilities of environmental engineering, 
had already been the object of considerable study 
throughout the 1970s (Wood, 1980). Bennett’s original 
work on data assimilation in physical oceanography 
began in the 1980s (Bennett and Budgell, 1987).

All novel techniques emerging from applied 
mathematics and mathematical engineering tend to 
move through other disciplines as matters of fashion, 
some gaining more purchase in the new subjects 
than others. Why then has the field of environmental 
science been largely unreceptive to the processing 
of information in real-time? For this is more than 
a matter of technological barriers in sensor and 
communication technologies and the physical 
infrastructure for enacting controls in real-time.

Sir Alan Harris, an eminent engineer who regretted 
the intellectual and professional separation of 
mechanical engineering from civil engineering, 
put it this way: if an object is meant to move, that is 
mechanical engineering; if it is meant to stay put, that 
is civil engineering. Control engineering, taught in 

the disciplines of mechanical engineering, electrical 
engineering, aerospace engineering, and chemical 
engineering, is about engineering the dynamics of 
change and variability in the behavior of an entity — 
“movement” in an object — after its conception, design 
and construction. Civil engineering, which embraces 
engineering hydrology and environmental engineering, 
has generally had little pressing need to pay attention 
to the operational stage in the life cycle of its products, 
even over the past three to four decades.

When operating a built system, monitoring how the 
state of a system changes with time in response to 
disturbance, understanding how input disturbance 
and state are related, and intervening deliberately — 
in real time — to manipulate other system inputs in 
order to maintain the behavior of the system within 
some desired pattern or bounds (or avoid some feared 
threat), are all key. In particular, when the changes 
with time are relatively rapid, some form of real-time 
data-processing and decision-making scheme becomes 
crucially important. We have already seen something 
of this in the Dynamic Data Driven Applications 
Systems (DDDAS) of Challenge # 6 (Chapter 2.6). 
With progressively increasing speeds of change, if 
not increasing complexity in the way the behavior of 
the system must be understood in order to exercise 
decision-making effectively, the associated schemes will 
need to become automated. Hence we have the typical 
context of real-time forecasting and control.

When the important elements of the system’s 
dynamical behavior are perceived as being relatively 
slowly changing, processing data in real-time and 
making split-second, unerring decisions seem 
irrelevant, for all practical purposes. And in that we 
can find much of the reason why real-time forecasting 
and control have achieved such modest practical 
success in the environmental sciences. The attaching 
frustration, as well as a contemporary diagnosis of why 
this has been so, is chronicled in Beck (2005a).

Kalman, it is to be noted, published his seminal 
paper in the Transactions of the American Society 
of Mechanical Engineers. His triumph seems to have 
been so great as to have stifled significant algorithmic 
developments for quite some time thereafter — with 

Chapter 3: Science and Engineering In “Real Time”



64  Grand Challenges of the Future for Environmental Modeling

The Challenges

perhaps the notable exception of Ljung, (1979), who 
in fact developed a filtering-like algorithm, designed 
for parameter (not state) estimation, starting from a 
premise rather different from Kalman’s. In the past 
decade or so, however, all manner of variations on the 
basic theme of filtering theory have been unleashed: 
ensemble filter, particle filter, unscented filter, singular 
evolutive extended filter, singular evolutive partially 
local extended filter, all of which have been enjoying 
applications across the environmental sciences, from 
the ocean sciences (Hoteit et al, 2005; Lermusiaux 
et al, 2006a; Torres et al, 2006), through hydrology 
(Moradkhani et al, 2005a,b; Drécourt et al, 2006a,b; 
Andreadis and Lettenmaier, 2006; Liu and Gupta, 
2007), and on to wildfire propagation (Douglas et al, 
2006), terrestrial ecology (Williams et al, 2005), and 
population dynamics (Wang, 2007).

Environmental Science and Control Theory

It is not the case that applications of the algorithms 
of filtering theory and the like have not been useful 
for purposes other than just pragmatic real-time 
forecasting and control. Boxes 2 and 3 of Chapter 
2.7 bear witness to this; to the legacy of the heady 
days of “youthful exuberance” characterizing early 
adoption of these algorithms in Environmental Science 
in the 1960s and 1970s. Present-day interest in data 
assimilation is significant, moreover, and the associated 
algorithms thereof have a strong cultural basis in 
filtering theory, hence control theory. Further details 
of both — control theory and data assimilation — will 
be placed in Box 4 below, along with the concepts of 
adaptive control and adaptive management (to become 
important in subsequent Challenges). Neither has 
it been the case that, given sensors and instruments 
for observing some of the more difficult attributes of 
environmental systems in real time, no interesting 
or significant features of behavior have thereby been 
revealed, to challenge the knowledge bases encoded 
in contemporary models (developed essentially in the 
absence of such data).24

A large part of the problem has in fact been this: 
what exactly are the economic, policy, and socially 
relevant reasons — what are the practical incentives 

24  For over a decade (1997-2008) the Environmental 
Process Control Laboratory of the University of Georgia gen-
erated such blocks of high volume high quality (HVHQ) data 
(in real time) for the C, N, P, and oxygen behavior of rivers, 
ponds, and biological wastewater treatment plants (Figure 
2), albeit only touched upon in passing in the open literature 
(for example, Lin and Beck (2007a,b)).

— for actually needing a forecast of environmental 
quality in the short-term? Responding constructively 
to this question will be a very important part of then 
fashioning a program of research for exploiting to 
the full the distinctive and unique opportunities for 
real-time computations with models, to be afforded by 
the advent of the EOs and the environmental cyber-
infrastructure.

All three of our textbook problems (from Chapter 
1.2) — given u and y, find M; given M and u, find y; 
and given M and desired, feared, and/or threatened 
y, find u — may be considered under the next grand 
Challenge we are about to express. Its distinctive 
feature, as opposed to the foregoing Challenges # 8 and 
# 7, are identification, prediction, and management as 
a function of time in the near vicinity of the present 
(t, let us say).25 In the sense that everything may be 
attempted in “real time”, the approaching Challenge 
# 9 cuts across much of what has gone before, perhaps 
courting duplication thereby, in particular in respect of 
Challenge # 6.

To appreciate the full extent of our next grand 
challenge, however, and the central role of M within it, 
we shall need now to appreciate more of the detail of 
Kalman’s filtering algorithm in the specific context of 
control theory, hence to appreciate too how the promise 
of data assimilation may be undermined by the security 
or otherwise of the model itself (Box 4). Under certain 
circumstances, our textbook problems may simply be 
demanding “something for nothing” or, to be precise, 
the reconstruction of too many unknowns from too 
few knowns.

As Box 4 shows, the essential role of a model M 
in assimilating observations is its capacity to 
unify interpretation of those observations across 
heterogenous scales of the time-space-biogeochemical 
continuua. This too is salient in differentiating some 
of the foregoing Challenge # 6 from the present 
Challenge # 9. Whereas Challenge # 6 asked how 
might models be used to inform the deployment 
and re-deployment of observing capacity in a built, 
operational EO, our concern here is different. An 
important part of the challenge is one of reconstructing 
coherent, homogeneous fields of variables internal to 
the model ([α,xn,xm]), in particular, from all manner 
of heterogeneous observing platforms and devices 
(subscripts m and n here distinguish between states 

25  Although we can usefully relax this constraint of be-
ing “near real-time” for the purposes of considering issues of 
data assimilation.
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Control Theory:
The Detailed Anatomy of Model State-Parameter Estimation

The model M relates inputs u to a variety of other entities: to state variables xm that are measurable 
(in effect xm ≈ y, the outputs); to states xn that are to all intents and purposes not measurable, i.e., not 
accessible at a suffi ciently fast sampling frequency (given current sensor technologies) or lacking the 
requisite intensity of spatial sampling; and to parameters α. Given the data [u,y] and given the current 
model M(t), the original motivation of fi ltering theory was to reconstruct current estimates of the 
unknowns within M, now distinguished in more refi ned terms as [α,xn ,xm]. The quintessential feature 
of Kalman’s fi lter is the manner in which forecasts of the fi elds [α,xn ,xm] are updated (or adapted) on 
receipt of the current observations, as an elegant function of the balance between the uncertainties of 
these forecasts and those of the observations.

Technically speaking, adapting estimates in the near past (t -) given [u,y] up to the present (t) is 
referred to as smoothing, while adapting them now (t) is the act of fi ltering; and not surprisingly, 
generating estimates into the short-term future (t +) is the matter of forecasting. In these abstract 
terms, there is very little that distinguishes the notion of parameters α from that of states (xn ,xm), 
merely their respective, presumed rates of change with time (and space). For α these ought either to 
be zero, or tending towards zero, i.e., α is truly constant or, at most, changing slowly.

Feedback Control:
When the Quality of the Model is Not Paramount

For the purposes of reconstructing estimates of [α,xn ,xm] in the vicinity of the present, the quality, 
security, and reliability of the model structure (M(t)) through which these quantities are inter-related, 
do not have to be paramount. They might be highly desirable properties of the model, but not 
necessary for the purposes of exercising (real-time) control: fi rst, because the model needs only to be 
a reasonable approximation of the system’s behavior over a very short span of time; second, because 
the deleterious consequences of acting on an erroneous basis will be quickly rectifi ed, when actual 
behavior (y(t +)) is next checked against desired behavior, yd(t +) — at least where there is feedback 
control, as opposed to feedforward control. Indeed, it is the goal of feedback control to maintain 
adequate steering of the system’s behavior in a desired manner in the face of an uncertain M, as well 
as uncertain future incoming disturbances (elements of u).1

Adaptive Control:
Seeking Deliberately to Improve the Quality of the Model

In adaptive control schemes it may be highly desirable to allow the parameters of the model (α) to 
change with time, such that model M(t) is always a reasonable approximation of what we might 

1  Feedforward (open loop) control presumes a secure model of how the system works, generates on that basis controlling 
actions intended to compensate for the anticipated consequences of the incoming disturbances that will impinge upon the 
system — but never acts upon any checks of whether actual and desired responses in the system’s behavior are matching each 
other. Critical to the success of feedforward control is that the knowledge embodied in the model, and foreknowledge of what 
will be the future disturbances, are both subject to very low uncertainty.
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call the actual, local, behavior of the system in the vicinity of the present. For in real-time control 
the priority is control of the behavior of y, not acquisition of the best, most scientifi cally sound M. 
However, given the uncertainty in M(t), and therefore in α(t), it might be prudent for the manipulative, 
controlling, input actions applied to the system (in effect, elements in the vector u) to be chosen so as 
to probe the behavior of the system in a manner deliberately designed to yield better estimates of α(t), 
i.e., to reduce the uncertainty in our understanding of the system’s behavior (encapsulated in M(t)). 
Where such adaptive control entails choosing elements of the current controlling actions (say u(t)) as 
a function of evaluating what it might take to have future y(t +) matching yd(t +), i.e., predictive control 
(Woldt and Dahab, 2006), so the algorithmic scheme is solving all three of our textbook problems at 
one and the same time.

Hence — broadly speaking — we have the algorithmic basis of adaptive environmental assessment 
and management fi rst so eloquently expressed in the book of Holling (1978). One essential difference 
between the apparent contemporary lack of pragmatic interest in real-time control and today’s 
complete embrace of adaptive management of environmental systems, may reside in the difference 
in the scales of time to which each primarily refers: very short (days, hours, minutes, seconds) 
in the former; but over the medium term in the latter, where policy choices are to be made and 
implemented over the span of months and years.

The algorithmic and conceptual foundations of fi ltering theory and real-time control are thus 
applicable over scales of time and space far from what constitutes but the very local in space-time 
— literally, in the here and now. Relaxing our constraint of [t -, t, t +] all being close to one another 
allows us now to enfold types of problems other than real-time forecasting and control into the same 
conceptual problem-solving framework.

When Quality of the Model is Crucial

There is one facet of real-time control, however, where we should want a model of the system M(t) to 
be very reliable. A defi ning feature of biological systems of water and wastewater treatment is the fact 
that one wishes to exercise control not so much on the basis of that which can be readily observed, 
i.e., y(t) and therefore xm(t), but on those states xn(t) recalcitrant to easy observation in real-time, 
typically the biomasses of a microbial ecosystem (Beck, 1981; Chen and Beck, 1993). In the absence 
of a reliable model, it is in the nature of fi ltering algorithms to manipulate estimates of xn(t), not to 
mention α(t), such that the estimate of xm(t) closely tracks y(t), at least to the extent that (logically) xm 
≈ y. Choosing an action conditioned upon a highly uncertain, reconstructed estimate of xn(t) would 
not be a good policy. Assessing the quality of the model M is therefore far from unimportant, even 
in real-time applications. It is just as important in the context of data assimilation, but in a different 
manner, as we shall see.

Data Assimilation:
Wresting Homogeneity of Estimated Fields

from Heterogeneity of Data Fragments

The generic character of data assimilation has already been expressed. It is, to reiterate: given the 
data [u,y] and given the model M, fi nd [α,xn,xm]. Of particular interest is the matter of solving this 
problem when the nature of the data is an eclectic mix of fragments of the (ideal) whole, as it is in 
the dynamic global vegetation models of Moorcroft (2006) (see, more specifi cally, for example, the 
complex of tower fl ux, fl ask, and satellite data discussed in Running et al, 1999). Let us suppose the 
mix of fragments, blocks, and patches of data across the various scales of space-time are denoted 
[u,y;∆t,∆s], where ∆t and ∆s are a variety of (integer) multiples of the base numerical discretization 
of the time-space grid of the model M, i.e., intervals δt and δs. The heterogeneity of the data can be 
assimilated through the model — and an accompanying procedure of estimation — to generate the 
time-space fi elds of [α,xn,xm], wherein the orders of the vectors in the latter will typically be very 
much higher than the order of the vector y of observations, especially in respect of coverage in space. 
Insofar as xn interpolates amongst and extrapolates beyond the “sampling points” of xm characterizing 
the behavior of the system along the biogeochemical continuum, this complements assimilation (state 
reconstruction) along the dimensions of time and space.

The power of the assimilation, when working with the various heterogeneous fragments of data, lies 
in the manner in which the model inter-relates the components of behavior underlying all of these 
fragments, as a refl ection of the behavior of the system as a homogeneous whole. This is exactly what 
we should expect of the environmental cyber-infrastructure to emerge in response to Challenge # 2 (in 
Chapter 2.2). There are bounds on the possibilities, however. Again they have to do with the quality of 
M, expressed now as a variation on the foregoing theme.

State-parameter Estimation or Model Evaluation
But Not Both Simultaneously

In order for the reconstructed time-space fi elds (of just [xn,xm] in fact) to be trustworthy in respect 
of provoking new scientifi c insights and hypotheses, model M should be maximally reliable in its 
encoded knowledge base. Ideally, the investigator should be in a position to assert that the model’s 
parameters α are known with certainty. If this is not the case, for example when the structure of M 
is considered known and correct, but some or all of α must be treated as unknown constants, any 
signifi cant mismatch between the structures of behavior underlying the model and the observations 
is likely to be channeled into untrustworthy and distorted reconstructions of [xn,xm], which distortions 
are likely to be magnifi ed the higher the order of xn, in particular. Conversely, the capacity to evaluate 
the appropriateness of M when data are to be assimilated will be diminished, if not rendered entirely 
impotent. Comparing the total order of the three vectors in [α,xn,xm] with that of the lone vector y, our 
metaphorical mathematical textbooks will tell us there is something of a challenge here: of “seeking 
too much from too little”; of attempting to reconstruct many more unknowns than there are knowns, 
which is not signifi cantly vitiated by the potential to observe y repeatedly (in time).
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call the actual, local, behavior of the system in the vicinity of the present. For in real-time control 
the priority is control of the behavior of y, not acquisition of the best, most scientifi cally sound M. 
However, given the uncertainty in M(t), and therefore in α(t), it might be prudent for the manipulative, 
controlling, input actions applied to the system (in effect, elements in the vector u) to be chosen so as 
to probe the behavior of the system in a manner deliberately designed to yield better estimates of α(t), 
i.e., to reduce the uncertainty in our understanding of the system’s behavior (encapsulated in M(t)). 
Where such adaptive control entails choosing elements of the current controlling actions (say u(t)) as 
a function of evaluating what it might take to have future y(t +) matching yd(t +), i.e., predictive control 
(Woldt and Dahab, 2006), so the algorithmic scheme is solving all three of our textbook problems at 
one and the same time.

Hence — broadly speaking — we have the algorithmic basis of adaptive environmental assessment 
and management fi rst so eloquently expressed in the book of Holling (1978). One essential difference 
between the apparent contemporary lack of pragmatic interest in real-time control and today’s 
complete embrace of adaptive management of environmental systems, may reside in the difference 
in the scales of time to which each primarily refers: very short (days, hours, minutes, seconds) 
in the former; but over the medium term in the latter, where policy choices are to be made and 
implemented over the span of months and years.

The algorithmic and conceptual foundations of fi ltering theory and real-time control are thus 
applicable over scales of time and space far from what constitutes but the very local in space-time 
— literally, in the here and now. Relaxing our constraint of [t -, t, t +] all being close to one another 
allows us now to enfold types of problems other than real-time forecasting and control into the same 
conceptual problem-solving framework.

When Quality of the Model is Crucial

There is one facet of real-time control, however, where we should want a model of the system M(t) to 
be very reliable. A defi ning feature of biological systems of water and wastewater treatment is the fact 
that one wishes to exercise control not so much on the basis of that which can be readily observed, 
i.e., y(t) and therefore xm(t), but on those states xn(t) recalcitrant to easy observation in real-time, 
typically the biomasses of a microbial ecosystem (Beck, 1981; Chen and Beck, 1993). In the absence 
of a reliable model, it is in the nature of fi ltering algorithms to manipulate estimates of xn(t), not to 
mention α(t), such that the estimate of xm(t) closely tracks y(t), at least to the extent that (logically) xm 
≈ y. Choosing an action conditioned upon a highly uncertain, reconstructed estimate of xn(t) would 
not be a good policy. Assessing the quality of the model M is therefore far from unimportant, even 
in real-time applications. It is just as important in the context of data assimilation, but in a different 
manner, as we shall see.

Data Assimilation:
Wresting Homogeneity of Estimated Fields

from Heterogeneity of Data Fragments

The generic character of data assimilation has already been expressed. It is, to reiterate: given the 
data [u,y] and given the model M, fi nd [α,xn,xm]. Of particular interest is the matter of solving this 
problem when the nature of the data is an eclectic mix of fragments of the (ideal) whole, as it is in 
the dynamic global vegetation models of Moorcroft (2006) (see, more specifi cally, for example, the 
complex of tower fl ux, fl ask, and satellite data discussed in Running et al, 1999). Let us suppose the 
mix of fragments, blocks, and patches of data across the various scales of space-time are denoted 
[u,y;∆t,∆s], where ∆t and ∆s are a variety of (integer) multiples of the base numerical discretization 
of the time-space grid of the model M, i.e., intervals δt and δs. The heterogeneity of the data can be 
assimilated through the model — and an accompanying procedure of estimation — to generate the 
time-space fi elds of [α,xn,xm], wherein the orders of the vectors in the latter will typically be very 
much higher than the order of the vector y of observations, especially in respect of coverage in space. 
Insofar as xn interpolates amongst and extrapolates beyond the “sampling points” of xm characterizing 
the behavior of the system along the biogeochemical continuum, this complements assimilation (state 
reconstruction) along the dimensions of time and space.

The power of the assimilation, when working with the various heterogeneous fragments of data, lies 
in the manner in which the model inter-relates the components of behavior underlying all of these 
fragments, as a refl ection of the behavior of the system as a homogeneous whole. This is exactly what 
we should expect of the environmental cyber-infrastructure to emerge in response to Challenge # 2 (in 
Chapter 2.2). There are bounds on the possibilities, however. Again they have to do with the quality of 
M, expressed now as a variation on the foregoing theme.

State-parameter Estimation or Model Evaluation
But Not Both Simultaneously

In order for the reconstructed time-space fi elds (of just [xn,xm] in fact) to be trustworthy in respect 
of provoking new scientifi c insights and hypotheses, model M should be maximally reliable in its 
encoded knowledge base. Ideally, the investigator should be in a position to assert that the model’s 
parameters α are known with certainty. If this is not the case, for example when the structure of M 
is considered known and correct, but some or all of α must be treated as unknown constants, any 
signifi cant mismatch between the structures of behavior underlying the model and the observations 
is likely to be channeled into untrustworthy and distorted reconstructions of [xn,xm], which distortions 
are likely to be magnifi ed the higher the order of xn, in particular. Conversely, the capacity to evaluate 
the appropriateness of M when data are to be assimilated will be diminished, if not rendered entirely 
impotent. Comparing the total order of the three vectors in [α,xn,xm] with that of the lone vector y, our 
metaphorical mathematical textbooks will tell us there is something of a challenge here: of “seeking 
too much from too little”; of attempting to reconstruct many more unknowns than there are knowns, 
which is not signifi cantly vitiated by the potential to observe y repeatedly (in time).
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that are readily observable (m) and those that are not 
(n); see Box 4). 

Assimilating the observations alone, in reconstructing 
the fields of [α,xn,xm], will result in massive sets of 
(computational) data (for example, Lermusiaux et al, 
2006a). When coupled with the need to compute the 
uncertainties attaching to all the elements of these 
fields (Lermusiaux et al, 2006b), finding and developing 
innovative means of visualizing such “gigantic data 
sets”, in the words of the NSF’s blue-ribbon committee 
on Simulation-Based Engineering Science (NSF, 2006), 
become indispensable to scientific progress. Ecology, 
in particular, in its need to estimate net ecosystem 
exchange (NEE) of C between the land surface and the 
atmosphere, has but recently assumed an interest in 
data assimilation (for example, Williams et al, 2005), 
with evident energy, although not solely through the 
device of some algorithmic variation on the theme 
of filtering theory26. Hydrology, wherein such forms 
of data processing have now a mature history of at 
least three decades, has its own grand challenge: of 
reconstructing precipitation fields, soil-moisture 
patterns (McLaughlin, 2002), and mapping the 
recharge of sub-surface water systems “from space” 
(Entekhabi and Moghaddam, 2007).

Conspicuous by its absence here is environmental 
engineering, wherein applications of data 
assimilation might most have been expected. For 
there one has the fact of practical access to HVHQ 
data and the need to exercise control on the basis 
of reconstructed fields of unobserved microbial 
populations (xn) — colored and animated through 
computational visualization (to cultivate the right 
populations at the right times and right places 
in a biological wastewater treatment system, for 
example). But this is, significantly and distinctively, 
a matter of processing information in real time.27 

26  Phrasing, or terminology, continues to have the 
potential to confuse. Sacks et al (2007) write of a “model-data 
fusion analysis”: in essence, calibration of a model M against 
data [u,y], with then reconstruction of constituent fluxes 
internal to the model as a function of its estimated param-
eters and (deterministically computed) unobserved states, 
i.e., [α,xn]. Wylie et al (2007) report on a method of “adaptive 
data-driven models” — let us say, a family of identified re-
gression relations, M(ti,sj) for several discrete periods of time 
(i) and discrete areas (j) — for achieving much the same.

27  Until 2007 (at least) the WATERS Network was 
entertaining the goal of detecting and forecasting the na-
tion’s water conditions in real time. By the time of issuing 
its eventual “Draft Science, Education, and Design Strategy” 
document (WATERS, 2008) emphasis appeared to have been 

And it is on this that our next grand challenge 
focuses.

Challenge # 9:

In a world of increasing inter-connectedness 
and instantaneous communication, 
environmental vulnerability, and 
infrastructure systems fragility — subject 
in all probability to higher-amplitude 
extreme events, natural disasters, terrorist 
threats, and the like — how best can the 
expected innovations in cyber-infrastructure 
and sensors under the Environmental 
Observatories programs be used in 
developing models and real-time data-
processing and forecasting algorithms: for 
the on-line detection of faults, failures, 
anomalies, and the weak signals portending 
imminent dislocations in system behavior; 
and for orchestrating/guiding rapid counter-
measures for enhancing and resuscitating/
reviving damaged system functioning, system 
survivability, and resilience?

Time is of the essence. But so is the imploding intensity 
of society’s interactions with the environment, ergo 
the more rapid propagation of consequences arising 
from natural events, faults, and failures. A conceptual 
argument can be mounted — for in general we 
lack sufficient data sampled with a sufficiently high 
frequency over sufficiently long (historical) periods to 
provide the basis of any empirical support — to suggest 
a growing preponderance of significant environmental 
perturbations of a higher-frequency character (at 
frequencies of days and hours, as opposed to months 
and years; Beck, 2005a)28.

The hurricane epitomizes the extreme natural 
event, for which there is a cyber-infrastructure for 
forecasting its trajectory and evolution in real time 
(for example, Gopalakrishnan et al, 2002). Such 
archetypal storms in turn call for real-time forecasting 
of stream stages and discharges, as discussed in the 
context of data assimilation and adaptive forecasting 
by Romanowicz et al (2006). And likewise they call 

withdrawn from the “forecasting” element, leaving “detect-
ing” thus much more prominent. This may be evidence, then, 
of the magnitude of Challenge # 9, notwithstanding any 
thrill at conquering some last technical frontier.

28  The term “frequency” is used here to connote the 
speed of propagation of a disturbance, not the frequency of 
occurrence of such an event over a given span of time.
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for schemes of real-time control over flows in urban 
sewer networks (Pleau et al, 2005), not least for the 
network to fulfil the function of “shock absorber” 
to the downstream wastewater treatment plant. The 
sudden spill of contaminant, deliberate or otherwise 
(from infrastructure failure), is another archetypal fast 
transient event. There, the purpose of an environmental 
observatory and its cyber-infrastructure, is to “pounce” 
immediately, as it were, onto the data streams in order 
to recognize “an event”, and to diagnose what, when, 
where, and how to countervail, in order to protect 
the well-being of the public, the flora and fauna, 
and the continued functioning of the (protective) 
built infrastructure itself (an issue also of concern in 
Challenge # 6).

There is a qualitative difference between an event 
whose propagation and consequences are broadly 
known, even in advance of its occurrence, from one 
of broadly unknown consequences and directions 
of propagation, even substantial uncertainty about 
whether an event has occurred. For the former, it could 
be that the grander of the challenges for the future 
reside not in the technical domain, but at the interfaces 
between science, policy, and society. Some of the 
Environmental Observatories will have the ambition of 
operating at these interfaces.

In 2005, the US National Water Research Institute 
(NWRI) facilitated a Workshop addressing this 
question: “What are the priority needs for social science 
research with respect to the hurricane forecasting and 
warning system?” (National Center for Atmospheric 
Research & the UCAR Office of Programs; www.
sip.ucar.edu; accessed 11 March, 2007). As an issue, 
“Precision Versus Accuracy: Are Risks Adequately 
Expressed by Current Deterministic Forecasts?” was 
ranked seventh amongst 22 in the Workshop Report. 
As a counterpoint to the evident enthusiasm in the 
NSF’s blue-ribbon committee on Simulation-Based 
Engineering Science, this hurricane Workshop Report 
challenges itself — and our community — on the 
matter of social accountability: “It Is in Color, and It 
Animates, So It Must Be Right”. Outside our cloistered 
circles of research and scientific enquiry, it should not 
surprise us that the trustworthiness of a model may be 
gauged, by the stakeholder taking flight in the face of 
a forecast threat, in ways very different from either the 
model-builder or the model-user.

Point of Departure in Responding to Challenge # 9

At the technical level, the cyber-infrastructure for the 
Littoral Ocean Observing System (LOOPS/Poseidon) 
shown in Figure 7 and its attaching agenda of research 
(Lermusiaux et al, 2006a), stand ready and waiting 
to respond to Challenge # 9. In Box 5, therefore, 
each component of that agenda is translated into the 
conceptual framework of Box 4, in order to make 
it more generally relevant across the domains of all 
the EOs. Not surprisingly, Figure 7 shares much in 
common with the environmental cyber-infrastructure 
of Mahinthakumar et al (2006) for addressing issues of 
threat-response in public, potable water supply systems, 
and depicted in Figure 5. Elements of Challenge # 6 
on adaptive sampling and Observatory operations are 
inevitably common to some of those in Challenge # 9.

The schemes of detection, diagnosis, and counter-
action for the broadly unknown event are where 
the technical and algorithmic emphases of future 
programs of research on environmental models might 
best be placed (in response to Challenge # 9). The 
urban water distribution system is a microcosm of 
the “imploding intensity of society’s interactions with 
the environment”, as we have expressed it. And the 
cyber-infrastructure of Figure 5 was in turn described 
as “evert-alert ... continually primed and poised to 
detect” an unknown event. In the words, once more, of 
Mahinthakumar et al (2006):

[A] typical network is highly interconnected 
and experiences significant frequent 
fluctuations in flows and transport paths. 
These design features unintentionally 
enable contamination at a single point in 
the system to spread rapidly via different 
pathways through the network, unbeknown to 
consumers and operators due to uncertainty 
in the state of the system. This uncertainty is 
largely a function of spatially and temporally 
varying water usage. When a contamination 
event is detected via the first line of defense, 
e.g., data from a water quality surveillance 
sensor network and reports from consumers, 
the municipal authorities are faced with 
several critical questions as the contamination 
event unfolds: Where is the source of the 
contamination? When and for how long…

Real-time answers to such complex questions 
will present significant computational 
challenges.
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The kinds of “answers” discussed above in Chapter 2.6 
had to do with “how best to re-deploy finite observing 
capacity away from the previous regime [u,y;t -]S towards 
[u ,ʹy ;ʹt +]S, where t - marks time before t and t + marks 
time after t, the moment of the event.” In that sense, 
the answers amounted to nothing more than passive 
observation alone of an unfolding contingency, albeit 
witnessed then in much greater detail.

Challenge # 9, in contrast, obliges us to contemplate 
the nature of actions intended deliberately to counter 
(enhance) the deleterious (desirable) consequences 
of the event — in real time. 29 At the very swiftest, 

29 Of course, if the effect (y) and the model M are 
known, and the unknown cause (event) is considered an ele-
ment of the observed inputs (u), then Challenge # 6 has too 
the task, in this sense, of finding u given M and y.

subliminal level, there is no time for such actions to wait 
upon cogitation on the part of the human “User” in the 
cyber-infrastructure of either Figure 7 or Figure 5. This 
is why we have automated control systems.

The Engineering of Control: Throughout the Life Cycle

Speaking of the urban water distribution system, 
Mahinthakumar et al (2006) note that it is the design 
features of such systems that unintentionally give rise to 
the sudden, transient, unpredictably propagating events 
their environmental cyber-infrastructure is intended 
to detect and counter. A substantial part of the historic, 
constrained capacity to implement controlling actions 
— in general, in real time — in the built environments 
of metropolitan water infrastructures, has been 
insufficiently detailed “thinking ahead”, from within 

Figure 7
Schematic of the architecture of the Littoral Ocean Observing and Prediction System (LOOPS/Poseidon) from the work of N M Patrikalakis, J J McCarthy, 
A R Robinson, H Schmidt, W Cho, C Evangelinos, P J Haley, S Lalis, P F J Lermusiaux, R Tian, W G Leslie, and W Cho. Reprinted with permission from 
Lermusiaux et al (2006a).
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BOX 5

An Ocean Sciences Research Program
and Its Pursuit in Other Branches of Environmental Science

A research agenda for the Littoral Ocean Observing System (LOOPS/Poseidon) has been expressed 
in Lermusiaux et al (2006a). Set originally in the specifi c domain of the Ocean Sciences it can be 
re-cast in the generic conceptual framework elaborated in the preamble to Challenge # 9, facilitating 
access thereto from the constituent disciplines of all the EOs.

The fi rst component of the ocean sciences research agenda is (Lermusiaux et al, 2006a):

(1) to integrate the various data with dynamical models to obtain optimal descriptions of 

the ocean and allow accurate process studies

which herein we would express as (1) reconstruct the temporal evolution of the fi elds of [xn,xm], 
together with their respective uncertainties (see also Lermusiaux et al, 2006b) — the most customary 
format of data assimilation — with a view to (2) provoking novel insights and hypotheses, uniquely 
enabled by such visualization and animation, i.e., as originally expressed (Lermusiaux et al, 2006a):

(2) to provide a foundation for hypothesis testing and model improvement, including 

estimating model and data errors (uncertainty modeling)

Under its respective EO, terrestrial ecology will increasingly have the novel opportunity of 
employing just the single, homogeneous model M with which to assimilate heterogenous fragments 
of data, across tower fl ux, fl ask, and satellite devices (Running et al, 1999). The ocean sciences have 
a diversity of ship, aircraft, satellite, buoy and submersible as observing platforms (Figure 7), from 
whose partial, differently angled “glimpses” into the behavior of marine systems — when brought 
together uniquely and distinctively within the whole of M — might spring the basis of discovery. We 
can see how “adaptive modeling” lies at the heart of Figure 7 and how within it state variables and 
parameters are conceptually separated into those that are measurable and those that are not, i.e., 
[xm,xn] and [αm,αn] respectively. Some, however, might question whether any model parameter is 
itself directly observable, as opposed to only calculable indirectly from the relationship, i.e., model, 
between the observable quantities in which it appears.

The ocean sciences agenda continues with a third component (Lermusiaux et al, 2006a):

(3) to initialize ocean models, or the ocean component of coupled models, and assimilate 

subsequent observations for optimal forecasting

Since the order of the state vector [xm,xn] of the model M to be employed in making forecasts into 
the future (t +) is much larger than that of the states directly observable (xm), our expression of this 
challenge would be: (3) assimilate data from the past (t -) up to the start t0 of the forecasting horizon 
in order to provide the initializing estimates of [xm,xn; t0] (within M).

Whereas our transcribed goals (1) and (2) deploy the unifying power (and presumed reliability) of M 
for the purpose of state reconstruction, a fourth goal seeks to channel processing of the collection of 
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data fragments into probing of that very reliability of the model, expressed originally as (Lermusiaux 
et al, 2006a):

(4) to estimate model parameters and parameterizations, including forcing and lateral 

boundary conditions

We transcribe this goal as: (4) to reconstruct [α,u], i.e., assimilate the data into the prior model 
Mprior, in order to investigate any propensity for temporal-spatial variability in α, hence to arrive at 
an improved model from which any signifi cant tendency for such parametric variability has been 
removed by restructuring of the model into an improved Mposterior (more or less as demonstrated 
in Spitz et al, 2001). The challenge in this, of course, is to constrain somehow the enormous 
computational freedom in reconstructing from the data the vast, unknown fi elds of states [xn,xm] at 
the expense of impotence in exposing unambiguously any structural error/uncertainty in Mprior — our 
Challenge # 7, in fact.

A fi fth and fi nal goal of the ocean sciences research agenda echoes our foregoing Challenge # 6 
(Lermusiaux et al, 2006a):

(5) to provide the means to assess observing systems, measure the utility of new data 

and collect the most useful observations through adaptive sampling

Indeed, experience from the ocean sciences has been defi ning for that earlier grand Challenge (for 
models across all the environmental sciences), i.e.: (5) to assess the effectiveness of choices over 
what is to be observed [u,y] in respect of minimizing the uncertainties attaching to the reconstructed 
fi elds [α,xm,xn] and — in a quasi-real-time sense — to use these fi elds up to the present, let us say 
[α,xm,xn;t -,t] in order change the current observing strategy [u,y;t -,t] to another, [u ,́y ;́t +].
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the earliest stages of the life cycles of such systems 
(planning, design, and construction), to the needs and 
nature of their subsequent operation (Beck, 2005a). 
Such would be to the regret of Sir Alan Harris. Hence 
also, in no small part, have contributions to the topic 
of data assimilation from environmental engineering 
been conspicuous by their absence. The challenge 
now is obvious: using models M of the entire built 
infrastructure, to design for its survivability, resilience, 
and adaptability over the long span of the operational 
stage in its life cycle.

Some would argue (Holling, 1996) that the fragility, 
or “brittleness”, arguably manifest in the behavior of 
current city water infrastructures, is a consequence, 
over the decades and centuries, of building into 
them but a kind of “engineering resilience”. This 
is a form of resilience wherein control — perhaps 
quintessentially the control engineering of automated, 
real-time control — is utterly dedicated in concept 
to pursuit of operation at a narrowly defined target 
of desired system performance, caricatured as some 
singular point yd invariant over time. For as long as the 
disturbances (u(t)) impinging upon the system are of 
but modest amplitude, behavior can be confined to a 
very small domain about yd. Come the unexpectedly 
large disturbance, the achievement of engineering 
resilience is lost. Worse still, perhaps not even any kind 
of base-line protective function of the infrastructure is 
preserved over the future period of system recovery. For 
that, Holling argues, the system must possess a kind of 
“ecological resilience” (Holling, 1996; and Challenge 
# 5), possibly something akin to the auto-immune 
response of the body. And that is truly the nature of the 
challenge just expressed, as well as a central reason for 
seeking a “biologizing” of control theory (Casti, 2002) 
in response to Challenge # 5.

It does not have to be large disturbances towards which 
an observing and supervisory system must remain alert. 
Watts (2002) asks, for instance:

How is it that small initial shocks can 
cascade to affect or disrupt large systems that 
have proven stable with respect to similar 
disturbances in the past?

And then he proceeds to answer his own question using 
a model network of agents, in other words, an agent-
based model (or IBM). Studies of urban wastewater 
infrastructures using integrated sets of differential-
equation models are already sufficiently mature for 
research to commence into identifying potentially risk-
prone “hot spots” (Vanrolleghem et al, 2005).
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Chapter 4: Science and Engineering for Policy and Society

Looking back over the preceding 
Sections and Challenges of this 
White Paper, a number of changes of 
emphasis are apparent, albeit with 

considerations of models (M) always central, against 
a constant background of, first, the motivation of the 
Environmental Observatories initiatives and, second, the 
seeming inevitability of the oncoming environmental 
cyber-infrastructure.

Expression of our Challenges, their grounding in 
contemporary research, and the beginnings of indicative 
ways of responding to them, has shifted strategically: 
from a focus on science (the Challenges of Chapters 
1 and 2) to an outlook embracing both science and 
engineering (Challenge # 9 in Chapter 3). This trend 
will be continued in the present Chapter, as the context 
in which the last three Challenges are elaborated turns 
towards addressing issues at the interfaces, not amongst 
the disciplines of the EOs as previously, but amongst 
Science, Policy, and Society. With this progression comes 
an expanding purview on the matter of who holds a 
stake in the outcomes of the Challenges being expressed: 
from primarily the scientist and model-builder as 
stakeholder hitherto, to gathering in of the policy-maker 
as stakeholder, and so to an all-inclusive awareness of the 
needs of the scientifically and technically lay members of 
the general public.

Our goal remains unchanging, however: to reflect on the 
challenges for research in the future on environmental 
models.

Problem-solving in the sense of the third of our triplet 
of textbook puzzles, i.e., find u, given M and desired, 
feared, and/or threatened y, is defining for both 
Challenges # 10 and # 11 to come. Having narrowed 
the span of attention to near real-time for the purposes 
of Chapter 3 (and Challenge # 9), we shall immediately 
relax it in the following (for Challenge # 10). “Real 
time” will be substituted by “slow time”; and short-term 
future horizons will become the “long view” across the 
generations (in Challenge # 11; Chapter 4.2). The iconic 
“User” in the cyber-infrastructures of Figures 7 and 5 
will be considered to have time enough for cogitation in 
the “feedback loop”; and the nature of the stakes held by 
that User will broaden, as we have said.

Two themes, then, will become central to the next pair 
of Challenges. Both can be thought of as discussions 
along a continuum: along the extent to which the 
“human dimension” is projected into the formalities 
of the model (M); and a progressive uncovering and 
refinement of — an extension of — what is understood 
as Uncertainty. We begin with the latter (in Chapter 
4.1), acknowledging its continuing prominence, and 
noting from our present vantage point how it emerged 
as far back as Challenge # 6. Whereas uncertainty 
was key to assessment by the model-builder of the 
power of a model to explain past observed behavior 
unambiguously, under Challenges # 7 and # 8, its 
consideration will now be key to the policy-maker as 
well, whose concern is to know where the model can be 
relied upon and where not.
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4.1 Management and Decision-support

In 1992, an article with an arresting title was published 
in the journal Advances in Water Resources: “Ground-
water models cannot be validated”, it proclaimed 
(Konikow and Bredehoeft, 1992). The title had 
three purposes: first, to shock the community of 
groundwater modelers — to jolt them out of the view of 
models being, or becoming, the “truth of the matter”; 
second, to affirm the kind of Popperian view on the 
growth of knowledge set out in introducing this White 
Paper (in Chapter 1.1); and third, to acknowledge the 
need not to mislead those scientifically lay members 
of the public, who hold a stake in the decisions to 
be made, into believing models encapsulate the 
(incontrovertible) “truth of the matter”.

At the Interface With Society and the Community of 
Scientists

Some seven years later, in 1999, pandemonium broke 
out in the normally quiet world of environmental 
foresight in the Netherlands. Its National Institute for 
Public Health and the Environment (RIVM), officially 
charged with preparing the country’s State of the 
Environment Reports, was publicly accused of lies, 
deceit, and shoddy workmanship with its computer 
models — by one of its own statisticians. The affair 
became front-page news, received prime-time coverage 
on television, and provoked questions and debate in the 
Dutch parliament (van der Sluijs, 2002; Petersen, 2006).

Throughout the 1990s the “headline” forecast of a 
change in global atmospheric temperature remained 
remarkably stable, anchored in the conclusion from 
the 1992 report from the Inter-governmental Panel on 
Climate Change (IPCC), which observed (Houghton et 
al, 1992):

[T]he evidence from modelling studies, from 
observations and sensitivity analyses indicates 
that the sensitivity of global mean surface 
temperature to doubling CO2 is unlikely to lie 
outside the range 1.5 to 4.5°C.

That the forecast should have remained so stationary 
over the years, in spite of all the research invested in 
reducing the scientific unknowns approximated in the 
models, was a curiosity to some of those studying the 
behavior of the scientific community involved (van 
der Sluijs et al, 1998). They argued that the constancy 
of the forecast may have fulfilled, primarily in fact, 
a sociological role: of maintaining coherence in the 

fragile process of building a global policy community, 
while not doing justice to the variegated, evolving 
understanding of the earth system (van der Sluijs et al, 
1998).30 Hardly surprising, then, was the way in which 
publication of Lomborg’s Skeptical Environmentalist 
(Lomborg, 1998) was to rattle the (arguably) hard-won 
composure of the scientific establishment, in particular, 
some members of the global change and earth systems 
science communities.

Mathematical models, and the interpretations and 
forecasts derived from them, have become matters of 
both very public debate and popular concern. To his 
2004 novel State of Fear, best-selling author Michael 
Crichton appends an illuminating “Author’s Message”, 
in which he offers his perspective on the state of play in 
modeling and forecasting the impact of climate change 
on sea levels: “all sides overstate the extent of existing 
knowledge and its degree of certainty” (Crichton, 2004; 
page 625); and subsequently, on page 628, he urges, 
“We need more people working in the field, in the 
actual environment, and fewer people behind computer 
screens”.

Even if the level of effort devoted to both sides 
(observation and computation) were balanced, the 
divide may not be bridged. Indeed, what transpires 
at this seemingly esoteric divide can remain both 
very public and highly contentious. Challenge # 7 is 
cast exactly there. So also is Mooney’s (2007) popular 
account of Storm World, with characters to mirror the 
divide: Emanuel and colleagues set in the computational 
camp with their models (M); Gray and associates cast 
as empiricists. It makes for good reading to pit the two 
camps against each other, in this case without apparent 
inaccuracy in reporting. For there appears to have 
been no meeting of minds, i.e., no productive, inter-
penetration of theory-based and data-based models, of 
the kind commended in response to Challenge # 7 (in 
Chapter 2.7). Still others, not encamped on either side of 
the divide, can yet get caught in the cross-fire, and come 
to regret not having had the benefit of an education in 
debating science in public (Curry et al, 2006).
As if to echo the earlier Dutch (RIVM) “foresight 
scandal”, and citing Konikow and Bredehoeft (1992), 
Lomborg (1998), and Crichton (2004), one side of the 
debate over the trustworthiness of environmental 
models and their forecasts has culminated in 
this contemporary title: Useless Arithmetic: Why 
Environmental Scientists Can’t Predict the Future, 

30  Just as Schaffer (1993) has said: “the most apparently 
technical estimates of cometary [earth systems] science are 
very sensitive to public needs and attitudes”.
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written deliberately for a non-technical audience 
(Pilkey and Pilkey-Jarvis, 2007).

Such uncloaking and public exposure of the 
weaknesses of models is neither new nor about to 
cease. Models, it has been said (Rayner, 2008), allow 
the craft skills and expertise of the model-builder 
to be legitimated — made objective (as opposed 
to subjective) — such that that expertise may be 
presented in an impersonal manner. Some would say 
disparagingly “passed off as detached and impersonal”. 
Model-building is thus merely the latest in a long 
tradition of creating oracles to be consulted. Deliberate 
shrouding of the soothsayer’s device in a mystique is 
ages-old, Schaffer (1993) would remind us, doubtless to 
the delight of Pilkey and Pilkey-Jarvis (2007).

Modelers, as a professional sub-group, are by no means 
universally held in high social esteem amongst the 
broader community of scientists.31

At the Interface With Policy, Regulation, and Law

The US National Research Council’s (2007) report, 
Models in Environmental Regulatory Decision 
Making, records the recent history of environmental 
models being put to use in the formulation of policy 
and promulgation of regulations (NRC, 2007). The 
executive branch of the US Federal Government, 
through its Office of Management and Budget (OMB), 
issued guidelines in 2001 calling for each regulatory 
agency to develop, in turn, their own guidance on 
ensuring the quality, objectivity, utility, and integrity 
of information employed in support of policy 
(OMB, 2001). The US EPA’s Council for Regulatory 
Environmental Modeling (CREM) — itself established 
in 2000 in response to the same gathering political 
momentum, for assuring quality in the numbers put 
into and generated by models — issued subsequently 
its draft guidance document (Pascual et al, 2003). 
Krupnick et al (2006) — writing more recently on 
the communication and treatment of uncertainty in 
models employed in Regulatory Impact Assessments 
(RIAs), like the NRC committee — directly 
acknowledge two policy-related documents as the 
motivation for their work: an earlier NRC report on 

31  See, for example, the report on the 13 February, 
2008, Seminar “A New Look at the Interaction of Scientific 
Models with PolicyMaking”, held within the Policy Foresight 
Programme of the James Martin Institute at the University of 
Oxford, UK (www.martininstitute.ox.ac.uk). The comments 
of Rayner (2008) reside in this report.

proposed regulations for air pollution (NRC, 2002); 
and an OMB circular giving specific and detailed 
guidance to EPA on analyses of uncertainty (OMB, 
2003).

Where there is regulation, there is the law, from which 
may follow litigation, including over the validity of 
a model: just as Bair (1994) was to observe in the 
wake of the milestone of Konikow and Bredehoeft’s 
(1992) contribution; and professional lawyers were to 
document a decade later (McGarity and Wagner, 2003). 
We see policy formation at a strategic level, therefore, 
with yet an interest in uncertainty penetrating to quite 
some technical depth. Conversely, uncertainty in the 
science encoded in the model must be articulated and 
addressed within the legal discourse, in largely non-
technical terms understandable, in principle, to all 
(Pascual, 2005; Fisher, 2007).

Where assessment panels are dealing with such 
uncertainty at the Science-Policy interface — and, 
above all, its communication to a scientifically lay 
audience, as in the Intergovernmental Panel on Climate 
Change (IPCC) — Patt (2007) argues there is a need 
not to confuse uncertainty associated formally with 
the model (M) with uncertainty arising from conflict 
amongst scientific experts. Audiences (the public) may 
respond differently to the two sources of uncertainty 
(Patt, 2007).

Thrown into the spotlight of public policy and public 
scrutiny, models, their uncertainties, and their 
trustworthiness pose thus challenges of a different 
character, albeit — perhaps — at one stage removed 
from the principal scientific thrusts of the EOs and 
environmental cyber-infrastructure.

Trustworthiness of Models in Supporting Policy Tasks

On 29 August, 2003, the OMB issued a “Proposed 
Bulletin on Peer Review and Information Quality”. The 
purpose of the Bulletin was to ensure “meaningful peer 
review” of science pertaining to regulation, as part of 
the “ongoing effort to improve the quality, objectivity, 
utility, and integrity of information disseminated by the 
federal government”, to which we have already alluded.
Responding to the manner in which the Bulletin was 
proposing to meet this intent, Jasanoff (2003) argued 
that, in short, making progress may depend more 
on getting stakeholders — the public, the regulators, 
the scientists, and so on — to agree in advance on 
appropriate methodologies and investigative protocols, 
than on subsequent scientific peer review, at least in 
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regulatory science. Establishing, and demonstrating, 
the reliability and credibility of the peer review process 
itself are every bit as crucial as the conventional 
challenge of establishing the reliability and credibility 
of the information to be reviewed in the process, 
including that from models. In what would be 
Jasanoff’s preferred form of “extended peer review”, it 
is the process, not the product, that matters; and the 
scientifically lay public, as legitimate stakeholders, 
should be engaged therein from the very beginning.

Jasanoff, let us be clear, was speaking on matters of 
science, not models (M), at the interface with public 
policy. So too are Nowotny et al (2001) in their book 
Re-Thinking Science: Knowledge and the Public in 
an Age of Uncertainty, portrayed somewhat more 
provocatively under the title of “Science’s New Social 
Contract with Society” (in an article published in 
Nature — portentously perhaps — on the eve of the 
new millennium; Gibbons, 1999). Their book reveals 
the challenges and responsibilities of environmental 
science as key to their thinking.

When Funtowicz and Ravetz (1990) wrote their book 
on Uncertainty and Quality in Science for Policy they 
may not have had environmental policy primarily in 
mind. But their work has since risen to prominence 
in this domain (van der Sluijs, 2007), as indeed 
acknowledged at the outset of the monograph on 
Environmental Foresight and Models: A Manifesto 
(Beck, 2002; page 3):

Today’s problems of environmental protection 
differ significantly from those of the past in 
several respects. Most obviously, the scale 
of the current problems is often global (not 
local) and their dynamics are evolving with 
relatively long (as opposed to short) time 
constants. Analysis of such problems will 
require extrapolation of perhaps staggering 
proportions: of making statements about 
the entire mosaic having inspected just the 
nature of a single tile. Perhaps less obviously, 
but more directly indicative of the distinctive 
character of this Monograph, we must find 
solutions that are based on inconclusive model 
evidence, not conclusive field evidence. Our 
research must be conducted in a setting of 
policy proximity and data poverty, as opposed 
to policy remoteness and data richness 
(Funtowicz and Ravetz, 1990). And we shall 
be less concerned with optimising recovery 
under low costs of failure, rather with avoiding 
disasters with high costs of failure.

For all of these reasons, including the foregoing 
observations on the esteem in which modelers are 
held, there is cause for us to question how society 
and policy-makers might view environmental 
models. This is especially so in the light of the 
thought-provoking title of Gibbons’ paper (Gibbons, 
1999), questioning the manner in which major 
scientific expenditures are justified, such as self-
evidently — and tellingly here — for the EOs and 
environmental cyber-infrastructure themselves.

In short, once the issue was of model (in)validation. 
It was cast in formal, technical terms, of matching 
scientifically observed history with satisfactory 
quantitative statistics (for example, Konikow and 
Bredehoeft (1992)). It was of concern primarily to those 
who had developed the model, or been professionally 
trained to use it; and it was of significant philosophical 
concern, treated with equally substantial authority 
in Oreskes et al (1994) (and Oreskes, 1998). Now 
this has become a matter of whether models are 
to be trusted by legal and policy persons, without 
the customary technical training; and by those 
members of the scientifically lay public affected by 
the outcomes of decisions informed by the forecasts 
generated by our models. It is also an issue of 
whether models are trusted by the vast majority of 
members of the professional scientific community 
who do not consider themselves modelers.

It is not unreasonable to expect that models, developed 
in the predominantly science- and research-oriented 
context of the EOs, will be deployed for the purposes 
of formulating policy, be subject increasingly to 
penetrating public scrutiny, and be vigorously disputed 
in both policy and public domains.

Challenge # 10:

Under the prospect of lengthy and costly 
social negotiation and legal discourse over 
policy formation, wherein the placing of 
trust by various stakeholders in the models 
underpinning that policy is crucial, and 
where it has come to be recognized that the 
needs of model evaluation and peer review 
for conventional research science are different 
from those of regulatory science, what 
new methods of evaluating the alternative 
models designed to fulfil the predictive tasks 
of policy formation, decision-support, and 
management for environmental stewardship 
are urgently needed? How is the uncertainty 
associated with both the model and the 
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decision-making context to be handled 
computationally and what new algorithmic 
and procedural developments will this 
warrant?

There is a paradox. The greater the degree of 
extrapolation from past conditions, so the greater 
must be the reliance on a model as the instrument of 
prediction; hence, the greater is the desirability of being 
able to quantify and evaluate the trustworthiness of 
the model, yet the greater is the degree of difficulty in 
doing just this.

Should the use of models be put aside in these 
situations? Pilkey and Pilkey-Jarvis (2007) argue they 
should, at least for all but what they call “qualitative 
models” (suggestive of Bayesian Belief Networks), in 
favor of the definitive field experiment. Their position 
is close to the oft-heard plea to “let the data speak for 
themselves”, untainted by mediation through any 
model (M). Those raw untranslated data, nevertheless, 
may yet be used to tell a story quite different from 
that to which, in respect of global warming, we have 
become accustomed (Robinson et al, 2007).

There is, of course, a counter to the argument of 
putting models aside. It is founded upon a simple 
complement to the more familiar concept of a model as 
a “truth-generating machine”, liberated by an insight 
first expressed long ago by Caswell (1976) in respect 
of ecosystem models, and now endorsed by the NRC 
report on Models in Environmental Regulatory Decision 
Making (NRC, 2007). It runs thus.

Conceive of the model as a tool designed to fulfil 
specified tasks, like a screwdriver or a computer 
program. Recall, from the discussion of algorithms 
for model calibration (in respect of Challenge # 7), the 
algorithmic framework of Regionalized Sensitivity 
Analysis (RSA) of Hornberger and Spear (1981), with its 
capacity to function effectively under gross uncertainty, 
employing but “qualitative, subjective, experience of 
the system’s apparent behavior” for the observed past. 
Recognize that behavior to be regulated in the future 
can be expressed formally for the RSA in just this same 
manner, as a (future) “behavior definition”. This might 
be in the form of a bracket of high-end exposure of 
a population to a novel, xenobiotic substance never 
before released into the environment, or a behavior 
imagined in the future, such as essentially similar 
circulation of waters in the North Atlantic, or radically 
different patterns thereof. And then think of the model 
as a tool — as an instrument of prediction — the 
quality of whose design is to be evaluated against such 

a task specification (such an expression of desired, 
imagined, or feared future behavior). We would be 
calibrating the model against a (qualitative) definition 
of future behavior.

Is the model M fit for purpose, we should ask? Is it fit 
indeed for a predictive purpose calling for substantial 
extrapolation into the unknown? In principle, 
previously unutilized numerical, diagnostic material 
from the RSA test can be evaluated statistically and 
made available to inform one’s judgement in coming 
to a view on this question (as sketched out in Beck and 
Chen, 2000).

Who is it, however, in a policy- and public-proximate 
setting, given Jasanoff’s notion of “extended peer 
review” (Funtowicz and Ravetz, 1990) and Gibbon’s 
call for “socially robust science” (Gibbons, 1999), who 
must come to such a judgement on the model?

Models conceived of as tools entail design spaces, 
in which searches and compromises are effected in 
achieving the triple goals of “fidelity” (to the science 
base), “transparency” (to the stakeholders), and 
“relevance” (to the task at hand). Judgements on the 
quality of design, however, may reside primarily in 
the eye of the beholder. The plurality of stakeholder 
solidarities amongst the public will view the 
trustworthiness of the model, and the policy it informs, 
in a variety of ways, and subject to negotiation. The 
government agency employing M must anticipate this 
plurality of perspectives in forming its provisional 
policy; in the political economy of the tussles over 
the trustworthiness of the model, a minimization of 
transaction costs might be sought, but not necessarily 
a consensus; and due process in a court of law 
may be needed to impose a singularity of outcome 
on the plurality of solidarity perspectives on the 
trustworthiness of M. For but one course of action on 
environmental stewardship can be adopted over the 
next decision-period.

To be of practical policy significance, any such 
computational advances in the analysis of uncertainty and 
sensitivity for the purpose of evaluating a model in the 
context of regulatory science will have to be articulated 
within the coherent administrative framework likely to 
emerge from the rich and extensive procedural detail set 
down in the NRC report on Models in Environmental 
Regulatory Decision Making (NRC, 2007). Should 
a suitable procedure materialize therefrom, some 
amongst the stakeholders might take all of this detail 
into account in coming to a summary judgement on the 
trustworthiness of the model and its forecasts.
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In the end, however, many others may not. Availing 
themselves only of the sparse heuristics these “many” 
are said to use in exercising judgement and making 
decisions (Kahneman et al, 1982), they might 
pragmatically place their trust in a model as a matter 
of mere faith, not the comprehension of voluminous 
procedural detail, much as the ancients would previously 
have ventured to consult an oracle (Ayton, 2007).

Uncertainty, Ignorance, Contradictory Certainties — 
and Making Decisions

Th ere is a pragmatist, decision-focused position on 
uncertainty in the model M. It will serve as our point 
of departure. Th is position has a distinctly diff erent 
perspective from that of coping with uncertainty and 
the lack of model identifi ability in solving the fi rst of our 
textbook problems (of fi nding M given u and y). Its goal 
is not to explain the past. It is diff erent yet again from 
attempts at eliminating uncertainty in the pursuit of a 
predictive science of the biosphere (Challenge # 8). It is 
instead this:

No matter the uncertainty in M, and the 
uncertainty in the resulting forecasts of 
the future of the environment (y), or in the 
(predicted) eff ectiveness of the policy alternatives 
and assumed future disturbances (u), as long as 
one policy, say u*, stands above the obfuscation 
of all the uncertainties, as that to be preferred 
— given the information currently to hand, and 
given too the various perspectives of all those 
holding a stake in the outcome of u*.

Th e formal, classical analysis of decisions, for 
identifying u*, can be simply portrayed in the tree-like 
graphical representation of Figure 8, with its sequences 
of nodes and branches: square nodes for the current 
and future decision points in time, with branches 
for each alternative course of action; circular nodes 
for events occurring over time into the future, with 
branches for the alternative, possible outcomes of these 
events, for future “states of nature”, that is (denoted 
“outcome j”, “outcome j + 1” in Figure 8). In other 
words, the event is considered a random event.

To appreciate now the approaching methodological 
challenges in using models to guide the making of 
decisions on environmental policy and management, 
some classifi cations of the extent, depth, and 
qualitatively diff erent “manifestations” of Uncertainty 
must be introduced. Th at is the purpose of Figure 8. 
Within its idealized framework, therefore, uncertainty 
surrounding the analysis of a decision can be classifi ed 
into three signifi cantly diff erent categories (for 
example, Krayer von Krauss and Janssen, 2005):

(i) Th e exhaustive set of (discrete) possible 
outcomes of the event (the future 
states of nature) is known, as too are 
the probabilities of occurrence of each 
outcome; this has been referred to as 
Statistical Uncertainty.

(ii) Th e exhaustive set of outcomes is known, 
but not all of the outcome probabilities, 
i.e., Scenario Uncertainty.

Archetypal tree graph of formal, mathematical, 
decision analysis: green square node for the 
decision now to be made; black branches emanat-
ing from this green node denote the alternative 
courses of action; red circular node for the future 
(unknown) state of nature, which event each 
action from the decision node will encounter; 
blue branches emanating from this red node 
represent the alternative outcomes of the future 
random event defi ning the future state of nature; 
and standard or regulation (S), above which the 
given combination of decision and event outcome 
will be deemed unsatisfactory (cross-hatched side 
of bar S) as opposed to satisfactory for those 
combinations ending up below bar S.

Figure 8
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(iii) Not all of the outcomes are known, ergo 
nor can the set of probabilities be known, 
i.e, Ignorance.

Statistical Uncertainty

The analysis of decisions under Statistical Uncertainty 
is taught to undergraduate civil and environmental 
engineers. They have practical needs for solving 
the ubiquitous problem of “decision-making under 
uncertainty”, such as assessing ground conditions (the 
uncertain future state of nature) prior to embarking on 
a construction project (the decision). In contemporary 
and vastly more complex schemes this classical form 
of decision analysis appears in what today are called 
environmental Decision Support Systems (DSS; see, 
for example, Matthies et al, 2007), well exemplified by 
the work of Reichert et al (2007) on river rehabilitation, 
and elaborated upon in Box 6.

Likewise taught to undergraduate civil and 
environmental engineers — and likewise dealt with 
in more detail in Box 6 — is the use of mathematical 
programming and optimization: to decide where 
to construct wastewater treatment facilities in a 
watershed with degraded water quality and how large 
to build each facility, including under uncertainty, 
as illustrated in Harrison’s proposal of what he calls 
Bayesian Programming (Harrison, 2007). The current 
popularity of “triple bottom line” accounting in 
discriminating the less from the more unsustainable 
courses of action (Elkington, 1998) can indeed 
encourage the view of “becoming less unsustainable” 
as just such a matter of mathematical programming, 
where now the constraints (or goals) to be formally 
satisfied (or optimized) are those very bottom lines: of 
{environmental benignity}, {economic feasibility}, and 
{social legitimacy} (as we shall see in our subsequent 
Challenge # 11).

In the traditions of both decision analysis and 
mathematical programming, the urge is to encapsulate 
in mathematical form (within M) the attitudes of 
stakeholders towards Statistical Uncertainty. In 
particular, attitudes towards welcoming or shunning 
risk are encoded mathematically as utility functions. 
Exactly how far this common impulse should propel 
models, simulation, and computation into mimicking 
the human dimension is a matter for careful 
judgement, as addressed further in Box 6, again under 
Challenge # 11, and beyond (for it raises important 
ethical issues, amongst others).

Scenario Uncertainty

The task of finding textbook-style the best course of 
action, u*, given value-imbued preferences encoded in 
M and the desired outcomes of yd, is not indispensable 
to a DSS, however. Finding future outcomes y, given 
a value-free M and an accompanying more or less 
sophisticated set of scenarios for u, i.e., solving for 
textbook forecasting, can just as well serve the needs of 
a DSS (as again Box 6 shows). This was the basis of some 
of the work of the Millennium Ecosystem Assessment 
(Carpenter and Folke, 2006), and that of Schröter et 
al (2006) on the vulnerability of supplies of ecosystem 
services across Europe in the face of future climate 
change scenarios (Chapter 2.1).

Looking back to the formal archetype of Figure 8, at the 
branches of outcomes for the uncertain future state of 
nature — scenarios, in effect — Liu et al (2009) have this 
to say:

There are no “true” likelihoods associated 
with scenarios in the sense that scenarios are 
not forecasts/predictions but descriptions of 
plausible alternative futures. However, for 
the purpose of risk assessment, scenarios can 
be categorized on whether they are possible, 
realizable, or merely desirable. Possible 
scenarios encompass all that are feasible; 
realizable scenarios are feasible scenarios 
operating under a set of defined and specified 
constraints; and desirable scenarios are possible 
scenarios that may not necessarily be feasible or 
realizable (Godet and Roubelat, 1996). In risk 
management, pair wise comparison of these 
relative “likelihoods” of the scenarios can be 
used to determine the priority of scenarios, 
for risks generally increase with scenario 
likelihoods and the undesirability (or severity) 
of consequences of scenarios.

In short, we can have uncertainty as type (ii) above, 
namely Scenario Uncertainty, typically here in the 
form of not knowing the probability that a forecast 
of future climate and meteorological patterns from a 
Global Circulation Model (GCM) will, in the event, 
turn out to be the case, as discussed in Box 6.

Whether either the discussion of Liu et al (2009) or 
the brief accounts of the two associated case studies 
in Box 6 imply Scenario Uncertainty strictly in the 
sense of Krayer von Krauss and Janssen (2005), is open 
to debate. What is clear is that nearly all works on 
decision-making under uncertainty have been studies 
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BOX 6

Decision Support Systems (DSS), Models, and the Human Dimension:
Points of Departure for Responding to Challenge # 10

We begin with a question that will come to pre-occupy the discussion of this Paper regarding 
“Science and Engineering for Policy and Society”. To what extent can, and to what extent should, the 
human dimension be formally encoded in the model (M)?

This Box has four segments, each serving the purpose of illustrating, through case studies, the role 
of models in supporting the making of decisions. Each segment also has the purpose of developing 
a response to the foregoing question. The fi rst segment points to case studies incorporating 
human preferences formally into M, and in a conventional manner. These mathematical accounts of 
preferences are then retracted from the model, successively in the two subsequent segments of this 
discussion. Finally, in the fourth segment, the human dimension is re-inserted into an M, and in a 
rather unconventional manner.

Models Within Formal Decision Analyses

Within the formalism of Figure 8, the model M relating outcomes (y) to decisions (u) is typically, as it 
is in the case study of Reichert et al (2007), a graphical web of elementary cause-effect couples of the 
probability (or Bayesian) network models, such as developed in the water and aquatic ecology sectors 
by Reckhow (1999) and Borsuk et al (2004, 2006). Expression of the elementary cause-effect couples 
in such network models may be derived in a variety of ways, as already noted under Challenge # 1, and 
with the following increasing levels of computational sophistication. First, they may simply be derived 
from expert judgement. Second, they may come from a regression relationship of this binary pair, i.e., an 
approximation identifi ed from controlled experimentation with a full science-based model articulating 
the mechanisms by which single input stimulus u induces a response in single output y. The single u-y 
couple may be a part of a multivariable model accounting for multiple inputs and outputs (u,y), such 
as, for example, the fl oodplain vegetation model in Reichert et al (2007). Third, a differential-equation 
model may be available for simulating the cause-effect (u-y) relationship, without any of the preceding 
approximation and simplifi cation.

Each cause-effect couple is an uncertain approximation of what may be the truth of the matter, hence it 
is assigned a probability of being correct. Outcomes from the probability network model, of concern to 
all holding a stake in the decision to be made, are likewise characterized by probability distributions. The 
attitudes of these stakeholders to Statistical Uncertainty, in particular, towards welcoming or shunning 
risk, are incorporated into the formal mathematical analysis of the DSS through the conventional means 
of elicited utility functions (in this matter, Reichert et al (2007) cite the procedures of von Winterfeld and 
Edwards (1986)).
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Models Within Mathematical Programming

Generating optimal such decisions under Statistical Uncertainty has been treated in archetypal 
form in Burn and McBean (1985), for example. In the contemporary literature we can fi nd the same 
problem treated as a matter of Bayesian Programming (Harrison, 2007), wherein all outcomes and 
their probabilities for all random events are assumed known, i.e., Statistical Uncertainty, founded 
on the classical form of the decision tree of Figure 8, with a multi-stage sequence of {... -decision-
outcome-decision-outcome- ...} over time. Harrison employs the equally classical model M of 
Streeter and Phelps for longitudinal, spatial variations in river water quality — remarkably durable, 
given its original publication in 1925.

In the context of today’s DSS, in particular, those supporting implementation of Integrated Water 
Resources Management (IWRM) and the search for less unsustainable arrangements of urban water 
infrastructure, methods of mathematical programming are currently being turned to the generic 
problem of multi-criteria analysis (Jakeman et al, 2006). The presently popular appeal to “triple 
bottom line” accounting in discriminating the less from the more unsustainable courses of action 
(Elkington, 1998) illustrates immediately the involved, tortuous nature of a multi-criteria analysis. 
Decisions should be seen by stakeholders to be {environmentally benign}, {economically feasible}, 
and {socially legitimate}. Driven by the European Union (EU) Water Framework Directive, with its 
emphasis on participatory approaches to watershed management, Giupponi (2007) argues the case 
for a new generation of DSSs:

The proposed approach can be applied in decision processes in which a group of people (i.e., 

decision makers and stakeholders), share a common conceptual framework and procedure, to 

structure the problem, discuss the decision and communicate the proposed solution.

Following public release of the software, entitled mDSS, with “m” signaling “multi-criteria analysis”, 
Giupponi (2007) records the fact that out of 1000 contacts through the project website, fewer than just 
20 downloaded the software, all of whom were working in an academic environment. This experience, 
as he says, is typical of the fi eld of environmental DSS as a whole, where adoption of these systems 
“by the targeted competent authorities ... is still substantially lacking” (Giupponi, 2007; p 256).

In the foregoing examples of how considerations of Statistical Uncertainty have been accommodated 
in situations of decision support, the scope and complexity of the model M have been subordinated 
to the (higher) task of fi nding the preferred strategy, u*, including its property of being robust 
in the face of such uncertainty. Algorithmic interest was focused on achieving the attribute of 
“preferred”, even “best”, about u*, whether in the mathematical domain of formal decision analysis, 
or optimization, or the combination of the two (as in Harrison (2007), for example).

In general, the purpose of any associated DSS is to render facile this computational burden, thus to 
focus the attention of stakeholders on matters of trading gains in achieving one goal against gains 
in attaining some other (incommensurate) goal, notwithstanding the fact that some of the value 
judgements of a stakeholder, for example, her/his attitude towards risk, may have been elicited from 
that individual and encoded in a computational algorithm.

On balance, projection of the human dimension into the formalities of M is here somewhat less 
than in the foregoing account of formal decision analyses. That projection will be foreshortened yet 
further in the following segment of this discussion.

Scenario Analysis

In their review of formally developing scenarios for environmental impact assessment, Liu et al 
(2008) are guided by the Intergovernmental Panel on Climate Change (IPCC) defi nition of a scenario, 
as:

[A] coherent, internally consistent and plausible description of a possible future state of the 

world. It is not a forecast; rather, each scenario is one alternative image of how the future can 

unfold.

Standing back from the foregoing focus on the task of fi nding u*, stakeholders can just as ably form 
their preferences on the basis of straightforward forecasts (y). The candidate alternative policies (u) 
can be assumed (as components of scenarios), threaded through a simulation model (M), and the 
outcomes (y) assessed by each stakeholder in respect of their proximity or otherwise to the hopes or 
fears of that stakeholder for the future.

In principle, the value judgements of stakeholders can remain external to the software, as they do in 
two similar integrated assessments of the impacts of future climate change on watershed behavior 
(Krysanova et al, 2007; Wilby et al, 2006). Both assessments concern themselves with the intersection 
between climate change and agricultural land use: the former (Krysanova et al, 2007) in respect of 
impacts of climate change on crop yields across the Elbe basin in central-north Europe; the latter in 
respect of potential consequences for in-stream water quality associated with the nitrogen cycle in a 
small, lowland watershed in the UK (Wilby et al, 2006).

The one acknowledges uncertainty through forecasts deriving from three GCMs, each themselves 
driven by the same pair of IPCC emission scenarios (Wilby et al, 2006). Since no probability is 
attached to any of these six future states of nature occurring, the assessment would be said to have 
been conducted under the condition of Scenario Uncertainty. The other case study accommodates 
uncertainty in the future pattern of climate change by taking a single forecast from a single Global 
Circulation Model (GCM) for a single IPCC scenario and then, through a downscaling procedure, 
constructs 100 (random) variations about this single theme (Krysanova et al, 2007). Interpreted within 
the archetypal decision-tree framework of Figure 8 we should have 100 branches emanating from 
the random (future) event nodes, each with a probability assignable according to the probability 
distribution assumed for the sampling of the 100 variations on the single theme — but no probability 
for that strategic theme proving true, in the event. Should you be a farmer from Lower Saxony 
viewing the changes of crop yield forecast by the model M, standing on the threshold of your 
decision node in Figure 8, with an interest in the fate of your grandchildren in the decade of 2046-
2055, you might well prepare to abandon cultivating winter wheat now, while taking up cultivation of 
silage maize — but you would essentially be banking on the single, strategic scenario becoming true 
(Krysanova et al, 2007).
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Human Agency, Culture, and Values in the Model

In stark contrast to the absence of a human dimension from the models (M) of the Elbe study, 
Janssen and Carpenter (1999) populate their conventionally simulated watershed (for the migration of 
nutrients from the land surface to a water body) with farmers, as the agents in an agent-based model. 
Each of these agents — in the computer world — perceives the state of the simulated environment 
and receives signals from the market for agricultural produce; interprets this in terms of his/her 
individual (simulated) mental model of the Man-Environment relationship, according to the plurality 
of perspectives in Cultural Theory (for example, Thompson, 1997); is capable of learning from the 
actions of neighbors, and therefore engages in a rudimentary form of social transactions (if not 
negotiations); and acts accordingly, purchasing fertilizer and applying it to the land, affecting thus 
the future state of the (simulated) environment and economy. This is, of course, little different in 
algorithmic intent to Bennett and Tang’s (2006) use of an IBM to simulate the migration of elk about a 
landscape, with the elk being treated as boundedly rational agents. It is also, however, a manifestation 
of what was intended in response to Challenge # 5 (Chapter 2.5) as the benefi t to be derived from 
fusing future developments in environmental modeling with those in the social (and biomedical) 
sciences.

Janssen and Carpenter’s interest was in studying the resilience of coupled natural-human systems, 
not in the matters of making decisions under uncertainty and developing the software of DSS. 
Nevertheless, their work allows us to reveal something more of the continuum of the human 
dimension (for comparison and contrast with that of uncertainty, as it motivates the discussion of 
this Chapter 4.1). This continuum can now be seen to span from the pole of “human choice and 
subjective values” to that of “utterly dispassionate, objective algorithmic logic”. The former can be 
embedded into the latter, almost as if to make subjectivity objective (as in the model of Janssen 
and Carpenter (1999)), whereas the choice of how to incorporate and parameterize objective, 
constituent, scientifi c hypotheses in M can be revealed as subjective and subject to differing cultural 
outlooks on the Man-Environment relationship (van Asselt and Rotmans, 1996; van Asselt and 
Rotmans, 2002).

Our models (M) are normally staunchly considered “value-free”. It will be controversial to most of 
us, therefore, to read this from van Asselt and Rotmans (2002):

An example of alternative quantities in perspective-based model route is the value for the 

CO2-fertilisation factor , which ranges from 0 (i.e., no effect) in the egalitarian model route, 

to 0.7 (i.e., substantial effect) in the individualistic model route.

where “egalitarian” and “individualistic” are two of the perspectives of the same Cultural Theory as 
that informing the computational studies of Janssen and Carpenter (1999).

In his summary of the 2004 Symposium on Uncertainty and Precaution in Environmental 
Management, van der Sluijs (2007) refers to this inter-penetration of the objective and the subjective 
as the “monster” of uncertainty at the Science-Policy interface:

The categories that we thought to be mutually exclusive and that now tend to get increasingly 

mixed up to create monsters in the science-policy interface include: knowledge versus 

ignorance, objective versus subjective, facts versus values, prediction versus speculation, 

science versus policy.

Drawing upon certain philosophical and anthropological considerations, he suggests there are four 
styles in which such a monster, or abnormality, is treated in a community, such as that of scientists, 
engineers and those constructing computational models of environmental systems (van der Sluijs, 
2007): one is to expel the problem, i.e., to presume the uncertainty is merely of a transient nature, 
redolent of the treatment of uncertainty in the sound-science paradigm discussed in Fisher (2007); 
another is to adapt the problem, by fi tting it back into the (above) categories, notably through 
attempts at quantifying the uncertainties, just as in the present discussion of this Box and elsewhere 
in this White Paper.

Projection (retraction) of the human dimension into (from) the model (M) has something of the 
same “monster-like” character about it, as apparent in Challenge # 11 on sustainability of the built 
environment (in Chapter 4.2).
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in decision-making under Statistical Uncertainty, as 
defined above. Few systematic analyses in using models 
for environmental decision-making under Scenario 
Uncertainty have been reported; and Liu and her co-
authors themselves conclude that much research on 
this is yet to be undertaken (Liu et al, 2009).

Ignorance

Extrapolation then to the third category of uncertainty, 
would suggest that fewer studies still can be expected 
to be found for the problem of decision-making under 
Ignorance. And this is in fact so.

When Lempert (2002) calls for “A New Decision 
Sciences for Complex Systems”, he comes close to this. 
His “deep uncertainty” resonates with our foregoing 
definition of Ignorance (in the decision context), 
but it also has resonance with the (rather different) 
notion herein of epistemic uncertainty, or structural 
error/uncertainty, placed elsewhere therefore at the 
heart of Challenge # 8 (in Chapter 2.8). That kind 
of uncertainty, in its deeper, vaguer manifestations 
— approximated technically by the {acknowledged 
unknown} in the model (M) — may prompt the 
question of how to design a model expressly for the 
purposes of discovery of our ignorance (Beck, 2002): 
for “probing the shores of ignorance” (Dennis et al, 
2002); and decidedly in a policy-proximate setting 
(Dennis, 2002).

Contradictory Certainties

Even the category of Ignorance can be sub-divided 
according to van Asselt and Rotmans (2002), along 
the lines of increasing uncertainty, expressed 
colloquially as: “We don’t know what we do not 
know”; “We will never know”; to “We cannot know”. 
From some point along this continuum we can choose 
to single out a fourth in our categories of Uncertainty, 
as follows.

So great is the uncertainty in the decision framing that:

(iv) More than one version of Figure 8 is 
actively maintained and promoted, each 
alternative caricatured as having the 
certainty of but a single outcome branch 
emanating from the future uncertain state 
of nature, i.e., a plurality of Contradictory 
Certainties (Thompson, 1985).

Here (with some exaggeration) we are in a situation 
of arch disagreement: “What I know is the truth; 
what you know is utterly false”. This is readily 
recognizable as a euphemism for disagreement not 
so much about the model and science from which it 
is drawn, but about what is desired as the outcome 
of the decision context, born of differing views on 
the Man-Environment relationship. Were a problem 
to lie within this seemingly paradoxical situation of 
Contradictory Certainties, we might find a plurality 
of such statements, each buttressed indeed by a quite 
different — but “certain” (in the eyes of its proponent) 
— model (M) (Thompson and Gyawali, 2007).

As we have progressed, then, from Statistical 
Uncertainty through Scenario Uncertainty and on 
into the more profound, more abundant uncertainty 
of Ignorance, our discussion has come to a point 
under Contradictory Certainties where the formal 
uncertainty of any particular model (M) is technically 
nil, while the decision context is replete with the 
uncertainty of disagreement amongst the various social 
groupings of stakeholders (some of whom might be the 
IPCC assessment “experts” said to be in disagreement 
in Patt (2007)). We have also reversed in this, backing 
away from the relative security of consensus on the 
decision framework (and chosen model of analysis), 
to the strident dissonance of competing schools of 
thought — on both the decision context and the 
model.32

However discomforting and unpalatable this might 
appear, two points are worth noting. First, it is already 
known that, as a consequence of a lack of model 
identifiability (Challenge # 6; Chapter 2.6), forecasts 
from a model of Lake Ontario’s ecosystem, for instance, 
can give rise to what are statistically confident, but 
contradictory, statements about future behavior (from 
equally plausible candidate parameterizations of the 
same model structure; Beck, 1987).

Second, and strategically much more important in 
developing responses to Challenge # 10, confronting 
uncertainty as Ignorance, or as Contradictory 
Certainties, as opposed to Scenario or Statistical 
Uncertainty, would seem to call for altogether 
different ways of developing environmental models 

32  Viewed from yet another perspective — to gauge 
the roles of models and the forms of uncertainty at the 
Science-Policy interface — Petersen (2006) has used a two-
dimensional categorization of decision contexts according to 
the presence/absence of consensus, across (a) the (subjective) 
values shared in the heterogeneous groupings of stakehold-
ers, and (b) the schools of scientific thinking.
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and evaluating their trustworthiness in support of 
decision-making.

Observatories, Observations, Updating,
and Adaptation

What the Environmental Observatories, the 
environmental cyber-infrastructure, and models (M) 
can collectively be to control and decision-making in 
real-time in Chapter 3 (and the preceding Challenge 
# 9), so they might be to all of this policy material 
and decision-making in slow time, for the present 
Challenge # 10.

At the core of the DSS prepared by Reichert et al 
(2007) for river rehabilitation is a probability (Bayes) 
network model (M), comprising a web of elementary 
cause-effect (u-y) couples with assigned probabilities 
of having given rise to observed behavior (if not 
probabilities of being accounts of the “truth of the 
matter”). As blocks of policy-driven data accumulate, 
as a consequence of the decisions being made, decade 
upon decade, say, learning in a Bayesian framework 
implies updating of those probabilities through 
reconciling the data with the model. Hence the 
distributions of probabilities for the policy outcomes 
(y) may be adapted over time and  presented to 
stakeholders for their consideration and negotiation 
via the DSS. Though M therein is quite different in 
form from the partial differential equations of the 
VHOMs discussed by Neuman (2003), for the purposes 
of policy-forecasting in respect of the (very) long-term 
storage of high-level radioactive wastes, the principle of 
updating is identical.

The “blocks of policy-driven data” gathered over spans 
of years from the EOs are to decision-making in slow 
time what the observations at instant t are to DDDAS.

The sequential character of decision-making, of 
{... -decision-outcome-decision-outcome- ...}, is 
ubiquitous and indispensable to the notion of adaptive 
management, which embodies the principle of learning 
through the probing and experimental component of 
a policy (Holling, 1978). It is equally relevant, whether 
in real or slow time, as Box 4 in Chapter 3 is at pains to 
point out. Once the decision has been taken, everything 
entailed in its unfolding consequences — the science, 
the structure and trustworthiness of the model, the 
efficacy of the regulation and policy, the community’s 
understanding of itself, its relationship with the 
environment, the model, and so on — will amount to 

an opportunity for learning and adaptation, ahead of 
the subsequent decision (Petersen et al, 2009). Adaptive 
policy design, to identify key uncertainties in ongoing 
ecosystem management, of both marine and terrestrial 
animal populations, and including through the use of 
simulation models, has both a substantial history and 
an active current research agenda (for example, Lessard 
et al, 2005).

Few, if any, DSS for environmental policy appear to 
deal with this inevitably sequential nature of making 
decisions, however. Policy analysis anticipates, in effect, 
a once-and-for-all decision, or one-stage decision tree, 
as Harrison (2007) observes in introducing his multi-
stage Bayesian Programming procedure. Fewer still 
concern themselves with estimating the value of the 
information acquired through monitoring between one 
decision and the next.33

Looking out over a policy horizon of 45 years, for a 
river subject to pulp-mill effluent discharges, with a 
first decision at the beginning of year 1 and a second 
due at the beginning of year 15, Harrison estimates the 
worth of monitoring water quality between the two 
decision points to be equivalent to some 4-5% more 
pulp production for a given annual sum of transient 
violations of dissolved oxygen standards, or to a 
reduction of 10% in the latter for a given level of the 
former (Harrison, 2007). He goes on to argue, with 
an eye on the kinds of shifts in ecological regimes of 
interest to Lessard et al (2005) and their colleagues (for 
example, Carpenter and Folke, 2006), that the value of 
such information from monitoring — and of adaptive 
management itself — could be significantly greater, but 
that extension of his two-stage to a multi-stage analysis 
would quickly become computationally prohibitive for 
just a handful of decision stages (Harrison, 2007).

None of the DSS in Box 6 deal with the issue of 
scientific visualization for comprehending the 
implications of model uncertainty, which is so 
prominent in the recommendations of NSF’s blue-
ribbon committee on Simulation-Based Engineering 
Science (NSF, 2006; see also Lermusiaux et al, 
2006b). None address the role of such visualization 
in communicating model and decision uncertainty 
to stakeholders, one of the two motivations for the 
work of Krupnick et al (2006). But even in the midst of 

33  Something to which Gabbert (2006) alludes in 
arguing the case for making more cost-effective reductions 
in parametric uncertainty in the RAINS integrated assess-
ment model, under the Clean Air for Europe (CAFE) policy 
program.
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decision-making in slow time — the 2004 Symposium 
on Uncertainty and Precaution in Environmental 
Management — one of the key insights of van der Sluijs 
(2007) is the essential need for “[s]ystematic long-term 
monitoring and learning”.

The observing capacity of the EOs and their attaching 
cyber-infrastructures, of such obvious immediacy 
in respect of real-time control, is just as necessary 
in the slow time of policy formulation, assessment, 
adaptation, assessment, adaptation, and so on.

4.2 The Long View: Towards Sustainability of the 
Built Environment

Begun under Challenge # 10, the changing emphasis in 
our discussion will continue, extending further away 
from the needs of Science alone, towards inclusion 
of those of Policy and Society, as we now compose 
Challenge # 11. This will be the last of our “technical” 
challenges. For Challenge # 12 (to follow in Chapter 
4.3) relates to challenges to ourselves, as a community 
of professionals involved in building and applying 
models of environmental systems.

Triple Bottom Line: Just Another Mathematical 
Program?

Over the two decades since the Brundtland definition 
was famously given to the notion of “sustainability”, 
scientific enquiries thereinto have come to acknowledge 
that what matters is neither just {environmental 
benignity} nor {economic feasibility}, but also 
{social legitimacy} of action, including those actions 
conditioned upon the outcomes of models. Given the 
foregoing discussion of decision support systems, 
and origination of these three {bottom lines} of 
sustainability (Elkington, 1998) in the quantitative 
methodology of accountancy, our instinct might well 
be to formulate problems of sustainability as ones of 
our textbook mathematical problems. The task would 
be to find preferred decisions (u), given a model (M) 
and desired outcomes (y), by solving the following 
caricature of a mathematical program:

Find those u minimizing {unsustainability over the 
generations}

Subject to satisfying the constraints of

{environmental benignity}
{economic feasibility}

and, especially, {social legitimacy}

Were we to formulate the task in this way, it is 
clear that a good deal — arguably too much — of 
people’s personal, subjective attitudes towards risk, 
uncertainty, the value of an environment, and so on, 
could have been quite inappropriately subordinated 
to mathematical approximations. Such insertion of 
“human agency, culture, and values in the model” was 
one of the topics singled out for consideration in Box 6 
of Chapter 4.1. Inter-penetration of matters objective 
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and matters subjective was discussed, in respect there 
of uncertainty at the Science-Policy interface (van der 
Sluijs, 2007).

At the heart of Challenge # 11 lies a similar inter-
penetration, of matters personal and matters 
computational, in models at the Science-Society 
interface. Driving in the one direction, computational 
technology and software have enabled the behavior 
of individuals and society to be incorporated into 
the model M (witness Janssen and Carpenter, 1999; 
Lempert, 2002). Moving in the counter direction, the 
general public and scientifically-lay individuals may 
increasingly be encouraged to assume the right, if not 
the obligation, to judge the quality and implications of 
those technical and scientific M, all in the interest of 
attaining social legitimacy of policy actions.

If there has been discomfort in the scientific 
community over the handling of uncertainty (van 
der Sluijs, 2007; Box 6), so too should there be in the 
engineering community over accommodating the 
computational treatment of personal preferences — as 
in the above caricature of a mathematical program. In 
responding to the challenge about to be introduced, 
those who construct and use models of environmental 
systems may eventually be drawn by considerations 
of {social legitimacy} into the unfamiliar territory of 
unusual and novel questions of ethics. This human 
dimension to the use of models will come to dominate 
in the following. Uncertainty there will be too, in 
more than sufficient volume and depth; but we shall 
henceforth largely take for granted the need for 
analyzing it, coping with it, and going forward in spite 
of it.

More immediately, the builders and users of models 
may be projected into new ways of conceiving of, if not 
simulating, the behavior of environmental systems, 
because of significant changes in the conception of 
what constitutes {environmental benignity} in the 
triple bottom line of the foregoing mathematical 
program. Motivated by a metaphor, we conceive of 
a “grand conjecture” in the following — a salient 
into terra incognita — and then ask: how might 
observations be collected, and how might computations 
with what kinds of models, be employed to corroborate 
or refute such a conjecture. First people, and then 
technology, will need to be put more obviously into 
the frame of consideration as to what might constitute 
future challenges for environmental modeling.

We shall need to move with ease between ecological 
and engineering thinking, between animal and human 

agency in the rural and the urban landscapes, and 
between what differentiates a “natural” environment 
from a “built” environment (as in infrastructure). For 
some, such a blurring of distinctions between concepts 
and disciplines may be just as discomforting as the 
ethical matters that will arise at the very end of this 
discussion.

Re-engineering the Built Environment as a Force for 
Good in the Natural Environment

We begin by picking up again the biological metaphor, 
already familiar from Challenge # 5, and seemingly 
everywhere appropriated.

That projects and products have life-cycles is a 
commonplace. We made use of it in developing the 
cases for Challenges # 9 and # 10. Having emerged in 
the late 1960s, life-cycle assessment (Frankl and Rubik, 
2000) sees itself as addressing a form of cradle-to-grave 
analysis, which in turn can be extended to the concept 
of “cradle-to-cradle” analysis (Stahel, 1997; McDonough 
and Braungart, 2002). Much vaunted too is the notion 
of biomimicry, with its proposed access to the vast 
store of intellectual seed-corn for the technological 
innovations of the Second Industrial Revolution 
(Benyus, 1997). Industrial Ecology has been formally 
in place as an academic subject for two decades (Ayres 
and Ayres, 2002); the Journal of Industrial Ecology was 
first published in 1996. The city can be conceived of as 
having not only a calculable ecological footprint (Rees, 
1992; Rees and Wackernagel, 1996) but also an appetite, 
a metabolism, a pulse, and so on (Wolman, 1965; Beck, 
2005a; Barles, 2007; Bettencourt et al, 2007).

Thinking in terms of the attributes of an organism 
and of the manner in which that organism lives and 
prospers harmoniously within its environment is, we 
now appreciate, a powerful metaphor for engineering 
and industrial design. It augments the image of the 
clockwork mechanism as the earlier epitome of the same, 
manifest itself in the above caricature of a mathematical 
program. The image of the “sentient organism in the 
ecosystem” introduced in Chapter 2.5 (Challenge # 5) 
can be transcribed productively into that of the “{city 
and its infrastructure} in the {watershed}” (Beck et 
al, 2009). This alternative conceptual framework, for 
thinking about re-engineering the built environment, is 
neither an entirely new metaphor nor yet exhausted in 
its potential to reveal novel avenues of further research. 
It provides much of the impetus for the expression below 
of Challenge # 11.
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The Challenges

Beyond exploiting the biological metaphor, we need 
thoroughgoing inter-disciplinarity in our thinking. 
Challenge # 5 also called for the pursuit of insights 
into the generic, dynamical properties of systems’ 
behavior. Its discussion culminated in advocacy 
of further synthesis in classical systems thinking, 
amongst the construction and use of models across 
the Environmental, Biomedical, and Social Sciences 
(Chapter 2.5). We drew upon the work of Hawes and 
Reed (2006) and their vision of a cyber-infrastructure 
associated with agency in terrestrial and agricultural 
systems, to suggest it was but a short step from there 
to the metaphor of the city as a “large animal grazing 
in its pasture”. This, Rees and Wackernagel (1996) 
had proffered earlier, as a means of engaging us in 
conceiving of the rather successful innovation of the 
urban ecological footprint — massive, of course, for 
cities such as Paris, New York, and the like. Needed 
too, then, is the kind of thinking already exposed in 
the culmination and synthesis of Challenge # 5: the 
capacity for moving effortlessly amongst disciplines, 
metaphors, and images.

About 50% of the world’s population is now (2009) 
classified as urban. Much of the built environment 
can be equated with infrastructure for sustaining the 
city’s metabolism. And while Kaye et al (2006) may 
write of how “footprints depict negative impacts of 
cities without accounting for the probable efficiency of 
dense urban living”, cities and the built environment 
are most likely viewed (in the popular mind-set) as 
inherent environmental “bads”, with no extenuating 
circumstances.

Yet things do not have to be this way, no matter how 
hard it may today be to conceive of cities as forces 
for good in the environment. Far from the burden of 
infrastructures having to compensate for the ills of 
cities, the two should “act” deliberately to contribute 
positively to enhancement of the natural environment 
about them. Let us take therefore the metaphor of 
Rees and Wackernagel (1996), with its obvious basis in 
ecology, and see just how far it can be pushed to serve 
the purposes of an engineering turn of mind.

Viewed as an organism, the city takes in its “daily 
bread” and “daily water”, together with life-sustaining 
“breath”. And we have engineered the return of the 
residuals of this metabolism to the air, water, and land 
environments surrounding the city. In the Global 
North, a good deal of the city’s daily water is used to 
convey the residuals of its daily bread — as wastewater 
— away from the confines of the urban space, so that 
citizens can lead healthy and productive lives. Much 

technological effort has been invested in treating that 
wastewater, not always to the good of the air, missing 
an opportunity to benefit the land, while not being a 
wholly unmitigated good for the water environment.

Imagine now the generic animal of Rees and 
Wackernagel as specifically a bull. The “bull” of intense 
social and economic activity in the city might be 
shod in the future with the “padded athletic trainers” 
of re-engineered infrastructures and imbued with a 
technological deftness and intelligence sufficient for 
restoring the business of running the environmental 
“china shop” in which it charges about. Pushing the 
metaphor yet further, the city might even profitably 
expand the shop’s operations, by becoming a net 
contributor to some of the watershed’s ecosystem 
services. Projections show that, by the compliance 
date (2015) of the EU Water Framework Directive, 
Paris might well look like the bull in the restored but 
vulnerable china-shop of the Seine watershed (Billen 
et al, 2007a,b; Even et al, 2007a), yet not at all self-
evidently shod with padded trainers, nor necessarily 
in possession of the intelligence and technological 
deftness required for expanding the shop’s operations.

With the ground thus prepared, our next Challenge 
can be cast upon it.

Challenge # 11:

Since the greatest debate of our times is the 
“sustainability debate”, with its significant 
implications for the design and operation 
of the built infrastructure at the interface 
between Man and Environment (most 
conspicuously so at the urban centers of 
socio-economic activity), how best should 
the Environmental Observatories be 
deployed and, more specifically, what kinds 
of models should be developed in order to 
promote a better strategic alignment of 
the study of urban metabolism with that 
of ecosystem services, all within the web of 
global biogeochemical cycles? How too, in 
the widest of possible terms, can innovations 
in information and communication 
technologies (ICT) — as realized in the 
environmental cyber-infrastructure — 
lead to tangible gains in reducing the 
unsustainability of current patterns of socio-
economic behavior?
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How indeed could the built infrastructure be re-
engineered to restore the natural capital and ecosystem 
services of the nature that occupied the land before the 
city? How could it be re-engineered to enable the city 
to act as a force for good, deliberately to compensate 
positively for the ills of the rest of Man’s interventions 
in Nature?

How in particular, to echo Challenges # 4 and # 5, 
can the inter-disciplinary insights of applied systems 
analysis at the conjunction of ecology, computational 
science, and biomedical science — of damage 
limitation, self-repair and self-replication, and their 
relationships with the notion of ecological resilience 
— be developed and then exploited to answer such 
questions? In the face of all manner of threats, how can 
the technological parts of the infrastructure (organs 
and cells) within the city-infrastructure couple (body 
of the organism) be designed to function as does an 
auto-immune system (or as might a “self-healing 
energy infrastructure”; Amin, 2001)?

How can cities of the Global South avoid adopting 
the same historical technological trajectory, and sell 
back to the Global North what they have learned from 
taking another path? How, more profoundly, can the 
engineering of city infrastructure be deployed expressly 
so that those at the bottom of the pyramid of dignified 
human development (Maslow, 1943) may be brought to 
a level where they care to engage in such a debate, over 
such a grand challenge for the next century — of cities 
as forces for good — beyond their desperate needs of 
survival for just today and tomorrow?

One scenario — one candidate future path for cities of 
the Global North; one grand conjecture in response to 
this host of questions — runs as follows.

If the water- and nutrient-return infrastructures 
of those cities could be uncoupled and kept strictly 
separated (from the household or office block onwards), 
eventual recovery of a “perfect fertilizer” product 
from a re-arranged wastewater treatment plant can be 
imagined (Beck et al, 2009). This would be tantamount 
to realizing “Uncoupling [of] the Nutrient and Water 
Metabolisms of Cities” as called for in Box 1 of Chapter 
2.1 and, once uncoupled, of then seeking to lower their 
respective rates of metabolism.

While this perfect fertilizer scenario is but one 
candidate path away from unsustainability, a number 
of conjectured benefits might flow therefrom, 
including, for instance:

(i) The product of a perfect fertilizer would 
generally be destined for direct return 
from the wastewater treatment plant 
to the agricultural sector, just as the 
city of Paris achieved through other 
means 150 years ago (Barles, 2007). 
From this should derive the benefit 
of rectifying some of the distortions 
wrought by the city in the pre-city 
global cycling of materials (nutrients, 
N and P, in particular) and exacerbated 
(arguably) by the advent of the water-
based paradigm of the nutrient-return 
infrastructure of the 20th Century (see 
Box 7).

(ii) Given intelligence and (metaphorical) 
deftness of movement, i.e., the enhanced 
authority of real-time operational control 
arising from such re-engineering of 
the built environment (and Challenge 
# 9), cities could from time to time re-
allocate the recovered fertilizer product 
as nutrient supplements discharged 
to the river. The goal would thus be to 
contribute positively to the ecosystem 
services provided by the watershed’s 
aquatic environment.

Our metaphor of “sentient beings within their 
environments” may now have been pushed to breaking-
point.

Nevertheless, in conjecturing upon these beneficial 
consequences, what kinds of Environmental 
Observatories, and what kinds of models, would best 
assist in evaluating their conception and their promise? 
How should we design and operate an EO to gauge 
progress in compensating for the kinks induced by 
man and the built environment in the global cycling 
of materials, or to corrobate/refute the hypothesis that 
nutrient supplements delivered from the city are of 
benefit for the watershed’s ecosystem, and therefore its 
service providers?

Observing The Big Picture

Gauging sustainability of the built environment, 
with its rich heterogeneity of disciplines and scales of 
enquiry, does not fall neatly across the three axes of the 
“data cube” of Figure 1. A sense of this can be obtained 
by examining each axis in turn, using the perfect 
fertilizer scenario as an anchoring device.
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BOX 7

Sustainability, the Nitrogen Cycle, and Models

Consider the global N cycle (Galloway et al, 2003; Boyer et al, 2006) and place conceptually within it 
the metabolism of the city, connected to its surrounding watershed. To deal, on the one hand, with 
the deleterious consequences for the aquatic environment of employing water-based conveyance in 
removing from the city the metabolic residuals of its “daily bread”, great effort and cost are invested 
in accelerated biological nitrifi cation and denitrifi cation of sewage during wastewater treatment. On 
the downside of the city, therefore, N is deliberately shunted into the atmosphere — in order to avoid 
historic problems of water pollution — whence it must then, also with great effort and cost, be fi xed 
through the Haber-Bosch process for incorporation back into the production of artifi cial fertilizer, 
for application to the land, on the upside of the city. Roughly two-thirds of the N “removed” in this 
manner from urban wastewater during treatment, across the whole of Finland, is vented as gaseous 
emissions to the atmosphere (Sokka et al, 2004). This does not seem a sympathetic way of organizing 
the metabolism of the city and its compensatory wastewater infrastructure; of enabling the city to sit 
more comfortably within its surrounding environment and the web of global material cycles in which 
its metabolism participates (Beck, 2005a).

Challenge # 11 asks how, in the great sustainability debate, can studies of the metabolism of urban, built 
environments be better aligned with those of global biogeochemical material cycles and ecosystem 
restoration — and the restoration of natural capital and the ecosystem services derived therefrom. 
Taking the N cycle as exemplary, we review here three case studies at the watershed scale in how 
models might have been used to respond to this question, had it been asked of them. Our goal is to 
reveal the anatomy of each study according to: the features of the watershed; the nature of the models 
employed; and the policy actions related to matters of infrastructure, in particular. In conclusion, we 
shall revisit the metaphor of “sentient beings in their environments”.

River Kennet, Thames, UK

The Kennet is a sub-watershed of the Thames, upstream of London, in the UK (and the subject of 
earlier discussion of scenario analysis in Box 6; Wilby et al, 2006). Annual and seasonal temperature 
and precipitation scenarios for 1960-2100, downscaled from three GCMs, each themselves driven by 
the same pair of IPCC emission scenarios (as noted in Box 6), are provided as inputs to a watershed 
hydrological model coupled to a water quality model, in order to generate six trajectories of in-stream 
concentrations of ammonium-N and nitrate-N over this 140-year span of time.

In essence, the sub-watershed is treated as an agricultural ecosystem. Although occupied in places 
by urban communities, no options for changes of infrastructure are considered (for this was not the 
purpose of the assessment). The metabolisms of the conurbations are not even traceable through the 
customary, time-invariant point-source discharges from their associated wastewater treatment plants.
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BOX 7 BOX 7

Mississippi, USA

The Mississippi watershed needs no further geographical referencing (Mitsch et al, 2001). 
Observations of the areal extent of hypoxia (low levels of dissolved oxygen) in the Gulf of Mexico 
show an upward trend across the decade of the 1990s, a trend mirrored variously in: (i) the in-stream 
concentration of nitrate-N near the outlet of the watershed, from 1945 through the late 1990s; (ii) 
the estimated annual mass of N fertilizer applied to the watershed from 1955 to 1995; and (iii) the 
areal extent of (engineered) land drainage in the watershed from 1900 onwards. No model (M) is 
mentioned, for none was a part of the assessment.

As for the Kennet, the watershed can be viewed predominantly as an agricultural ecosystem. The 
single most important goal of watershed management is to promote denitrifi cation wherever possible, 
i.e., the venting of gaseous N species to the atmosphere. This is to be realized through the preferred 
options of riparian buffer strips and, more so, wetlands, for changing both the rural (primarily) and 
urban (much less so) wastewater infrastructures. Whereas we have sought in this White Paper to push 
ecology into the image of the highly engineered city (the metaphor of the “large animal grazing in 
its pasture”), so here installing wetlands and buffer strips to compensate for the ills of agricultural 
activities (in the Mississippi) is tantamount to the reverse concept: of pushing the engineering of 
infrastructures out from the city into the companion vision of the highly managed rural landscape 
(similar exchanges of perspective are evident in Box 8).

Seine, France

The city of Paris dominates the Seine watershed, whose estuary discharges into the English Channel, 
off the northern coast of France (Billen et al, 2007a). An integrated set of four models is central to the 
assessment (Even et al, 2007a). It comprises (i) the watershed upstream of Paris, (ii) the watershed 
downstream of Paris, (iii) the Seine estuary, and (iv) the Seine Bight, a coastal portion of the English 
Channel (Figure B7.1). It is gathered around a consistent, core representation of the biogeochemistry 
of N, P, and Si (Even et al, 2007a) and inspired by the nutrient spiraling concept of Newbold et al (1981) 
and Elwood et al (1983). It is also the most complete account of the non-atmospheric portions of 
fl uxes within the given global biogeochemical material cycles. Three annual hydrological sequences 
(wet, mean, dry) form the basis of a reconstruction of this biogeochemistry, for retrospective analyses 
of the entire watershed from a pristine era (pre-1000) through the 1500s and from 1850 through the 
present, and on to prospective behavior up to 2015, when the European Union Water Framework 
Directive will require waters in watersheds to have achieved a “good ecological status” (Billen et al, 
2007b). Through an exercise in model structure identifi cation typical of our Challenge # 7, water quality 
downstream of Paris cannot be made to match observations without accounting for the effects of 
combined sewer overfl ows from Paris in the lower watershed model (Even et al, 2007b).

An especially illuminating historical analysis of the N-metabolism of Paris over the period 1801-1914, 
and the best account to hand of the dynamics of gross urban metabolism, reveals the following: 
that of this daily bread, as we have called it, one quarter was required for powering transport (by 
horse); that the residuals of the metabolism were returned to the land as (solid or liquid) fertilizer to 
support the production of food for the city; and that the introduction of “British-style” water-based, 

fl ushing toilets brought about the 
downfall of the previous fertilizer-
focused infrastructure, which 
included “urine separating toilets”, 
presumably of a non-fl ushed, dry 
variety (Barles, 2007). In the suite 
of four models, metabolism of the 
entire current population of greater 
Paris (10,000,000 people) and the 
water/wastewater infrastructure 
to which it is connected, is 
approximated as the resultant, 
time-invariant concentrations of 
the pollutants (nutrients, even 
resources) in the effl uent fl uxes 
discharged from a handful of 
wastewater treatment plants.

Viewing the watershed as an 
ecosystem, today’s spatial 
distribution of terrestrial 
autotrophic production and heterotrophic consumption shows the watershed as a surface with 
predominantly higher photosynthesis (P) than respiration (R), except for Paris, conspicuous through 
its P/R ratio descending to below 0.1 (Billen et al, 2007a). Future implementation of infrastructure 
options for metropolitan Paris, including inter alia wastewater treatment through biological 
nitrifi cation-denitrifi cation, is expected both to curb the occurrence of harmful algal blooms (HABs) 
and to return coastal marine primary production in the Seine Bight to a state of being P-controlled by 
2015, as previously during the watershed’s earlier biogeochemical history of the traditional cottage 
economy of the 1200s through the 1700s (Billen et al, 2007b).

Synthesis: State-of-the-art Models

Our fi rst conclusion is this. All three case studies are striking in their attainment of the “big picture”, 
conspicuously in respect of the time dimension, which is so distinctive of the idea of sustainability and 
its long view.

Second, and without exception, as far as we can tell, models of the watershed reduce description 
of the behavior of the entire city-water infrastructure couple to but a single vector of constants 
characterizing the point-source discharge to the river (as in Billen et al, 2007a). No feature of the city-
infrastructure couple merits an account as a variable with a differential equation of state. On the 
other hand, the scope of current models of the urban wastewater infrastructure (sewer network and 
wastewater treatment plant) barely penetrates into the watershed, extending but a short distance 
down the receiving stream from the point-source discharge (Schütze et al, 2002; Vanrolleghem 
et al, 2005). The two, models of watersheds and models of wastewater infrastructure, are thus the 

Geographical delineation of the suite of four models used in the case study of the Seine watershed in 
France and its accompanying coastal zone. Reprinted with permission from Even et al (2007a).

Figure B7.1
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BOX 7 BOX 7

Mississippi, USA
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Observations of the areal extent of hypoxia (low levels of dissolved oxygen) in the Gulf of Mexico 
show an upward trend across the decade of the 1990s, a trend mirrored variously in: (i) the in-stream 
concentration of nitrate-N near the outlet of the watershed, from 1945 through the late 1990s; (ii) 
the estimated annual mass of N fertilizer applied to the watershed from 1955 to 1995; and (iii) the 
areal extent of (engineered) land drainage in the watershed from 1900 onwards. No model (M) is 
mentioned, for none was a part of the assessment.

As for the Kennet, the watershed can be viewed predominantly as an agricultural ecosystem. The 
single most important goal of watershed management is to promote denitrifi cation wherever possible, 
i.e., the venting of gaseous N species to the atmosphere. This is to be realized through the preferred 
options of riparian buffer strips and, more so, wetlands, for changing both the rural (primarily) and 
urban (much less so) wastewater infrastructures. Whereas we have sought in this White Paper to push 
ecology into the image of the highly engineered city (the metaphor of the “large animal grazing in 
its pasture”), so here installing wetlands and buffer strips to compensate for the ills of agricultural 
activities (in the Mississippi) is tantamount to the reverse concept: of pushing the engineering of 
infrastructures out from the city into the companion vision of the highly managed rural landscape 
(similar exchanges of perspective are evident in Box 8).

Seine, France

The city of Paris dominates the Seine watershed, whose estuary discharges into the English Channel, 
off the northern coast of France (Billen et al, 2007a). An integrated set of four models is central to the 
assessment (Even et al, 2007a). It comprises (i) the watershed upstream of Paris, (ii) the watershed 
downstream of Paris, (iii) the Seine estuary, and (iv) the Seine Bight, a coastal portion of the English 
Channel (Figure B7.1). It is gathered around a consistent, core representation of the biogeochemistry 
of N, P, and Si (Even et al, 2007a) and inspired by the nutrient spiraling concept of Newbold et al (1981) 
and Elwood et al (1983). It is also the most complete account of the non-atmospheric portions of 
fl uxes within the given global biogeochemical material cycles. Three annual hydrological sequences 
(wet, mean, dry) form the basis of a reconstruction of this biogeochemistry, for retrospective analyses 
of the entire watershed from a pristine era (pre-1000) through the 1500s and from 1850 through the 
present, and on to prospective behavior up to 2015, when the European Union Water Framework 
Directive will require waters in watersheds to have achieved a “good ecological status” (Billen et al, 
2007b). Through an exercise in model structure identifi cation typical of our Challenge # 7, water quality 
downstream of Paris cannot be made to match observations without accounting for the effects of 
combined sewer overfl ows from Paris in the lower watershed model (Even et al, 2007b).

An especially illuminating historical analysis of the N-metabolism of Paris over the period 1801-1914, 
and the best account to hand of the dynamics of gross urban metabolism, reveals the following: 
that of this daily bread, as we have called it, one quarter was required for powering transport (by 
horse); that the residuals of the metabolism were returned to the land as (solid or liquid) fertilizer to 
support the production of food for the city; and that the introduction of “British-style” water-based, 
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downfall of the previous fertilizer-
focused infrastructure, which 
included “urine separating toilets”, 
presumably of a non-fl ushed, dry 
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entire current population of greater 
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autotrophic production and heterotrophic consumption shows the watershed as a surface with 
predominantly higher photosynthesis (P) than respiration (R), except for Paris, conspicuous through 
its P/R ratio descending to below 0.1 (Billen et al, 2007a). Future implementation of infrastructure 
options for metropolitan Paris, including inter alia wastewater treatment through biological 
nitrifi cation-denitrifi cation, is expected both to curb the occurrence of harmful algal blooms (HABs) 
and to return coastal marine primary production in the Seine Bight to a state of being P-controlled by 
2015, as previously during the watershed’s earlier biogeochemical history of the traditional cottage 
economy of the 1200s through the 1700s (Billen et al, 2007b).

Synthesis: State-of-the-art Models

Our fi rst conclusion is this. All three case studies are striking in their attainment of the “big picture”, 
conspicuously in respect of the time dimension, which is so distinctive of the idea of sustainability and 
its long view.

Second, and without exception, as far as we can tell, models of the watershed reduce description 
of the behavior of the entire city-water infrastructure couple to but a single vector of constants 
characterizing the point-source discharge to the river (as in Billen et al, 2007a). No feature of the city-
infrastructure couple merits an account as a variable with a differential equation of state. On the 
other hand, the scope of current models of the urban wastewater infrastructure (sewer network and 
wastewater treatment plant) barely penetrates into the watershed, extending but a short distance 
down the receiving stream from the point-source discharge (Schütze et al, 2002; Vanrolleghem 
et al, 2005). The two, models of watersheds and models of wastewater infrastructure, are thus the 

Geographical delineation of the suite of four models used in the case study of the Seine watershed in 
France and its accompanying coastal zone. Reprinted with permission from Even et al (2007a).

Figure B7.1
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BOX 7 BOX 7

unintended, perfect complements of each other. The latter also tend never to be coupled either to 
the potable water treatment and distribution network on the upside of cities or to the groundwater 
systems below them.

Technologies and Future Scenarios

While now not quite as novel as one might have thought, the single, simple technological device 
of the urine-separating toilet could short-circuit the onerous atmospheric diversion of N — in the 
big picture — as it cycles around the city’s metabolism, at least in principle. For it would have to be 
socially legitimate, literally at an intensely personal, local scale in the individual household. And in the 
longer-term, extrapolating over the generations towards a vision of a drier, if not dry, metropolitan 
sanitation infrastructure, some deft technological capabilities (of real-time process control; Achleitner 
et al, 2007) might well be needed to navigate through a risk-prone phase of newly re-plumbed 
households and offi ces coupled to the current city-wide sewer network (Beck, 2005a; Larsen and 
Gujer, 1996; Borsuk et al, 2008).

The challenge in prospect is this. Once households are fi tted with storage tanks for the separated 
urine, that material must be removed in a timely manner and transported to a place of treatment, for 
the eventual production of fertilizer. If the place of treatment is that of the customary end-of-pipe, 
centralized, municipal wastewater treatment plant; and if the “pipe” to be used for conveyance is a 
sewer network subject to precipitation-related fl ow variations with associated emergency overfl ows 
to the receiving water body; then the entire infrastructure — during this intermediate phase (say 5-20 
years into the future) — will become highly vulnerable to fast, transient events of inadvertent releases 
of ammonium-rich liquors to the surrounding aquatic environment (Beck, 2005a; Larsen and Gujer, 
1996; Lienert and Larsen, 2006).

Several stages for this scenario into the future can be imagined, all using the “business-as-usual” 
paradigm of cities of the Global North as both a point of departure and as a reference trajectory. 
These stages comprise: (i) installation of urine-separating toilets and storage cisterns in households 
and places of work, together with their associated re-plumbing and automation; (ii) operation of (i) 
for the purposes of producing a “designer sewage” fl ux leaving the existing combined sewer network 
and entering the centralized wastewater treatment plant, for improved performance there, albeit with 
N species regarded as pollutants of which to be rid (as in Achleitner et al, 2007); (iii) a possible re-
orientation of stage (ii) wherein the N species are recovered as resources through re-arrangements of 
side-stream processes at the plant; (iv) installation at the plant of a dedicated nutrient recovery sub-
system, with optimization of operating arrangements for (i) so as to maximize conveyance of urine-
concentrated sewage to the plant — the risk-prone, “adolescent” phase colloquially referred to as 
real-time control of the “yellow wave” (Larsen and Gujer, 1996); and (v) installation of a second pipe 
network within today’s combined sewer system for dedicated transfer of the urine concentrate from 
households to the dedicated nutrient recovery sub-system at the treatment plant.

To close, let us recall the metaphor of sentient beings in their environments, introduced in Chapter 
4.2 by way of motivating Challenge # 11. Suppose there were to be a city, such as Paris might become in 
the long view, deemed a sustainable “bull” in the sense of “shod with padded athletic trainers” and 

“in possession of the technological deftness” required to intervene as a force for good in respect of 
the Seine’s ecosystem services, i.e., fi t for “expanding the china shop’s operations” (Beck et al, 2009; 
also Box 8). Could or should such a city be developed deliberately in the watersheds of either the 
Kennet or the Mississippi, to compensate there for the loss of ecosystem services and the distortions 
of global material cycles as a consequence of their being (perceived as) essentially intensively 
managed, agricultural ecosystems (Hobbs et al, 2006) or rural-crops ecosystems (Kaye et al, 2006)? 
And to what extent is the platform of the suite of models (M) for the Seine-Paris system (Figure B7.1) 
appropriately oriented as a point of departure in responding to such a question?
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unintended, perfect complements of each other. The latter also tend never to be coupled either to 
the potable water treatment and distribution network on the upside of cities or to the groundwater 
systems below them.

Technologies and Future Scenarios

While now not quite as novel as one might have thought, the single, simple technological device 
of the urine-separating toilet could short-circuit the onerous atmospheric diversion of N — in the 
big picture — as it cycles around the city’s metabolism, at least in principle. For it would have to be 
socially legitimate, literally at an intensely personal, local scale in the individual household. And in the 
longer-term, extrapolating over the generations towards a vision of a drier, if not dry, metropolitan 
sanitation infrastructure, some deft technological capabilities (of real-time process control; Achleitner 
et al, 2007) might well be needed to navigate through a risk-prone phase of newly re-plumbed 
households and offi ces coupled to the current city-wide sewer network (Beck, 2005a; Larsen and 
Gujer, 1996; Borsuk et al, 2008).

The challenge in prospect is this. Once households are fi tted with storage tanks for the separated 
urine, that material must be removed in a timely manner and transported to a place of treatment, for 
the eventual production of fertilizer. If the place of treatment is that of the customary end-of-pipe, 
centralized, municipal wastewater treatment plant; and if the “pipe” to be used for conveyance is a 
sewer network subject to precipitation-related fl ow variations with associated emergency overfl ows 
to the receiving water body; then the entire infrastructure — during this intermediate phase (say 5-20 
years into the future) — will become highly vulnerable to fast, transient events of inadvertent releases 
of ammonium-rich liquors to the surrounding aquatic environment (Beck, 2005a; Larsen and Gujer, 
1996; Lienert and Larsen, 2006).

Several stages for this scenario into the future can be imagined, all using the “business-as-usual” 
paradigm of cities of the Global North as both a point of departure and as a reference trajectory. 
These stages comprise: (i) installation of urine-separating toilets and storage cisterns in households 
and places of work, together with their associated re-plumbing and automation; (ii) operation of (i) 
for the purposes of producing a “designer sewage” fl ux leaving the existing combined sewer network 
and entering the centralized wastewater treatment plant, for improved performance there, albeit with 
N species regarded as pollutants of which to be rid (as in Achleitner et al, 2007); (iii) a possible re-
orientation of stage (ii) wherein the N species are recovered as resources through re-arrangements of 
side-stream processes at the plant; (iv) installation at the plant of a dedicated nutrient recovery sub-
system, with optimization of operating arrangements for (i) so as to maximize conveyance of urine-
concentrated sewage to the plant — the risk-prone, “adolescent” phase colloquially referred to as 
real-time control of the “yellow wave” (Larsen and Gujer, 1996); and (v) installation of a second pipe 
network within today’s combined sewer system for dedicated transfer of the urine concentrate from 
households to the dedicated nutrient recovery sub-system at the treatment plant.

To close, let us recall the metaphor of sentient beings in their environments, introduced in Chapter 
4.2 by way of motivating Challenge # 11. Suppose there were to be a city, such as Paris might become in 
the long view, deemed a sustainable “bull” in the sense of “shod with padded athletic trainers” and 

“in possession of the technological deftness” required to intervene as a force for good in respect of 
the Seine’s ecosystem services, i.e., fi t for “expanding the china shop’s operations” (Beck et al, 2009; 
also Box 8). Could or should such a city be developed deliberately in the watersheds of either the 
Kennet or the Mississippi, to compensate there for the loss of ecosystem services and the distortions 
of global material cycles as a consequence of their being (perceived as) essentially intensively 
managed, agricultural ecosystems (Hobbs et al, 2006) or rural-crops ecosystems (Kaye et al, 2006)? 
And to what extent is the platform of the suite of models (M) for the Seine-Paris system (Figure B7.1) 
appropriately oriented as a point of departure in responding to such a question?
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Space

If we are to understand something about distortions 
in the cycling of nutrients, it will be necessary to track 
the movement of foodstuffs into the city (as opposed 
to water influxes) and to track the fate of the nutrients 
thereafter. If dry sanitation is to be the core principle 
in designing the urban nutrient-return infrastructure, 
the customary measurement of chemical species in 
water fluxes will doubly not suffice. Observing the city’s 
nutrient metabolism cannot readily be cast into the mold 
of conventional measurement strategies for the aquatic 
environment.

Any EO turned thus to observing the big picture, of 
sustainability of the built environment, is self-evidently 
going to have to cover a dramatic span of scales along 
this dimension of space, without dropping the many 
significant scales at which the issue manifests itself, 
hence to focus solely on observing at either the global or 
the local scale. Box 1 reveals that span and the need to 
sample at many points along it: from the global trading 
of virtual water in the composition of the city’s incoming 
foodstuffs (Allan, 2003; SIWI-IWMI, 2004); and the 
accompanying global movement of nutrients from soils 
in producer-export countries to coastal environments 
downstream of cities in consumer-import countries 
(Grote et al, 2005); across the prospect of urban growth 
in coastal zones fueled by membrane and desalination 
technology, with then the potentially distorting 
consequences of yet further enhanced eutrophication 
for marine ecosystems (Jackson et al, 2001); through 
the built infrastructure of water storage and diversion 
schemes, and their undermining of our capacity for 
managing watersheds as ecosystems (Poff et al, 2003; 
Arthington et al, 2006); and down to exercising control 
in real-time over the flushing of a myriad household 
toilets — at the local (and very personal) scale — in 
order to “re-design” the urban crude sewage flux for 
improved performance in a centralized wastewater 
treatment system (Achleitner et al, 2007).

Time

The Brundtland definition of sustainability, paraphrased 
as the following exhortation, is nothing if it is not about 
the long view:

“Doing well now by the biosphere and the stock 
of natural capital and flow of services therefrom 
implies doing at least as well generations 
hence.”

Adopting such a long view, however, is not to turn a 
blind eye to higher-frequency variations over hours, 
if not minutes and less. Measuring the “fast” cannot 
necessarily be sacrificed in favor of the “slow”, any 
more than local observations might be sacrificed in 
favor of global observations (or vice versa) along the 
spatial dimension.

Introduction of the technological device of a urine-
separating toilet — as part of a path towards fertilizer 
recovery — anticipates a years-long, if not decades-
long, risk-prone phase in its imagined life-cycle (in Box 
7). Having to control risky short-term behavior, over 
minutes and hours, may be a necessary precursor to 
achieving the eventual maturity of an infrastructure 
imagined currently as less unsustainable than 
today’s arrangements. In not yielding to the common 
temptation to sacrifice the high-frequency detail in 
favor of an exclusive low-frequency focus, there will 
be sufficient heterogeneity of significant temporal 
variability to qualify the problem as fully subject to a 
tyranny of scales (NSF, 2006), every bit as much as in 
the spatial domain.

Indeed, we should be reminded of a well known saying: 
“for want of a nail a kingdom was lost” — as was the 
former symbiosis lost between nineteenth-century 
Paris and the Seine watershed with the introduction 
of the familiar WC (Barles, 2007; Box 7). Conversely, 
installing today the urine-separating toilet may become 
“the nail, given which a kingdom might be gained”, 
with all of the cross-scale ramifications thus implied.

Biogeochemistry

Expression of the data cube of Figure 1 obliged us 
to think there (in Chapter 2.1) of sampling, sensors, 
and instrumentation ranging from very small 
biogeochemical targets to the very large, and to 
conceive of the intensity of consistent sampling in 
space-time of the species/individuals within that 
(bounded) biogeochemical range. Presently, and 
arguably (in the context of the sustainability of the 
built environment), observation of the minutiae of 
chemical species may suffice, together with — after 
some gap in sampling along the biogeochemical 
continuum — just the behavior of the human species 
moving about the built environment.

At the heart of the issue of re-engineering the city’s 
nutrient-return infrastructure reside (at least) two 
personal and intimate matters of human agency: 
dietary needs and preferences; and the willingness to 
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adopt one technology over another (as in re-plumbing 
the household for a urine-separating device, for 
example). A tyranny of scales may not reign here 
over sampling and observation in the biogeochemical 
dimension. But some other form of distorting power 
might (as we shall now argue).

People in the Picture; Agents in the Model

The Seine-Paris case study of Box 7 is indeed 
impressively complete in so many respects. Yet it is 
flawed by one omission of profound importance to 
using models (M) in exploring ways of moving towards 
greater sustainability of the built environment.

The vast and intense social and economic activities 
of 10,000,000 agents — people, that is, behaving 
as consumers, citizens, enfranchised stakeholders, 
adopters of technologies (urine-separating toilets, 
notably), holding a plurality of cultural perspectives 
on sustainability, having a growing interest in man’s 
relationship with the environment, perhaps even 
contemplating Gibbons’ (1999) suggestion of Science 
being in need of a new contract with Society — are 
compressed into but a single, inanimate vector of time-
invariant boundary conditions of the watershed model. 
All this is compressed down to a point, as in a point-
source discharge of treated wastewater.

The following words may only have been spoken 
in jest, but they make their point too: “Wastewater 
treatment plants would work well enough, if only 
people would eat salads in winter and goulash 
in summer” (Watts, 1993). Therein lies the 
unmistakable element of human agency in the urban 
landscape: choice over diet. That goes well beyond 
the concept of creating a “designer sewage” explored 
in Achleitner et al (2007), who take agency largely 
out of the hands of citizens, vesting it instead in an 
automated system of household storage-tank releases.

Why have we remained blind, almost wilfully so, to 
individual and collective human agency in the urban, 
built environment?

For we recognize — and must always (self-evidently) 
have known — that the river network is defined by 
the geographical and topographical features of the 
watershed, hence the movement of water above and 
below the land surface; that there are people, animals, 
plants, and vegetation on this surface; and that all the 
metabolism on, and attributes of, the surface cause 
materials (many considered, for a time, as pollutants) to 

be deposited on it and moved across it by precipitation-
induced fluxes of water. Similarly, we can recognize 
that through the society and economy in which 
they participate, people cause degradation of water 
quality, not the inanimate “population equivalent” 
of engineering analysis, or the somehow “people-
divorced” wastewater treatment plant of the local, 
municipal government, which entity itself may often be 
accused of “dumping” sewage into the environment.

This sense of detachment of the person from the 
problem, which is marked in the urban environment, 
cannot obtain so readily in the rural environment. 
There, individual farmers are unmistakably responsible 
for the distribution and manipulation of the behavior 
of plant and animal communities over the land surface 
(and thus the degradation, or improvement, of water 
quality).

People too participate much more than previously — in 
living memory — in their aquatic environment, partly 
because of the growing awareness of man’s impact 
on the environment and the successful restoration of 
improved surface water quality (devoid, on average, 
in some places, of significant contamination from 
the social and economic metabolism of the city, as in 
prospect for the Seine by 2015). It is they, the people, 
and their domestic pets, who contract illnesses from 
contact with the water. It is they who are disadvantaged 
if the sport fishery, restored through a more complete 
wastewater infrastructure and thus healthier ecosystem 
in the lake or river, is threatened in the short-term by a 
treatment plant failure or in the long-term by climate 
change, or whatever (Beck, 2005a).

Accounting formally in a model M for human agency 
in the built, urban environment is just as important 
as in the rural/agricultural environment, if not much 
more so. Huge quantities of water and nutrients may 
be pushed through the rural systems of agriculture and 
livestock production. Increasingly, however, personal 
preferences and market signals as to what should be 
produced in those systems, if not how this daily bread 
is produced, will emanate from urban communities 
(SIWI-IWMI, 2004). In that sense, the social and 
economic activities of cities are primary drivers of the 
movement of materials around the globe.

A kind of hegemony — if not tyranny — of intellectual 
effort devoted to the theoretical (and computational) 
frameworks of rural landscapes/actors seems to 
have been exercised over that given to their urban 
counterparts.
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In Box 6 (Chapter 4.1) we saw how Janssen and 
Carpenter (1999) had populated their simulated rural/
agricultural landscape and its simulated drainage to 
a simulated eutrophy-prone lake, with computational 
agents (as simulated farmers). The same landscape 
was likewise the focus of the individual-based models 
and cyber-infrastructure of Hawes and Reed (2006). 
Shifting away from the pole of these “rural forest/
crops” ecosystems and along the continuum of 
ecosystems types of Kaye et al (2006),34 agent-based 
models are finding ever wider application in the 
contemporary discussion of sustainable management 
of water resources (Hare et al, 2006; Giupponi et 
al, 2006; see also Hare and Deadman, 2004). These 
address principally matters of utilizing infrastructure 
for conveying water around the various landscapes to 
furnish the agents — be they trees, crops, livestock, 
or humans, even urban citizens (Tillman et al, 
2001) — with their daily water intake. Castelletti and 
Soncini-Sessa (2006, 2007) seem almost to celebrate 
the push towards greater participation of scientifically 
lay stakeholders, as if paradoxically to revitalize the 
application of formal, mathematical optimization in 
water resource systems analysis.

Further along the continuum, at the instance of a 
suburban “residential” ecosystem, a different kind of 
socially sensitive modeling, “participatory modeling”, 
has attracted attention. Built within the STELLA™ 
software framework (Brown Gaddis et al, 2007), its 
purpose is to assist stakeholders at the urban-rural 
interface in managing nitrogen migration through 
the Solomons Harbor watershed, Chesapeake Bay, 
Maryland. Excessive amounts of reactive N-species 
arise there from the diffuse, nonpoint sources of 
household septic tanks and from residential agents 
applying artificial fertilizer to yards and gardens — in 
effect, bringing us back to the same problem context 
surrounding the farming agents of Janssen and 
Carpenter (1999).

34  In enquiring whether there is “A Distinct Urban 
Biogeochemistry?”, Kaye et al (2006) propose a continuum 
of ecosystem types: “urban core” and “rural-forest” bound 
its extremes, with “urban residential” and “rural-crops” 
as internal sampling points. Hobbs et al (2006) posit an 
alternative spectrum, or continuum. Theirs ranges from the 
“wild” (or natural/semi-natural) across to the “intensively 
managed” (agricultural), with “novel ecosystems” arising 
somewhere between these two poles — as a result of invasion, 
degradation, or abandonment. The reader, however, is left to 
presume that the “urban core” and “residential” ecosystems 
must lie off their scale, beyond the “intensively managed”.

Moving on from the “residential”, hence to end up at 
the urban/built (“urban core”) pole of their continuum 
of ecosystems, Kaye et al (2006) have composed 
a diagram redolent of the icon-based interface of 
the STELLA™ software platform (Isee Systems Inc, 
Lebanon, New Hampshire), with controls on cause-
effect relationships denoted by stick-figure humans. 
They make no further progress, however, beyond this 
conceptual recognition of human agency, towards 
formal model computations. Instead, they proceed to 
recommend three areas for future urban biogeochemical 
research, two of which concern:

[H]ybrid engineering-ecology models ... linked 
to the energy and material demands generated 
by human demographic trends and household 
actions ...

[M]odels that link demographics, diets and 
waste.

while the third (consideration of household-scale 
actions) concludes (Kaye et al, 2006):

[W]e are unlikely to generate accurate 
predictive models of urban biogeochemistry 
without incorporating the actions that people 
take in managing their landscapes and 
households, and we are unlikely to be able to 
predict those actions without understanding 
their variation as a result of culture, attitudes, 
and socioeconomic setting.

They give us thus a foretaste of how — under the 
Environmental Observatories — we might respond to 
the challenges in pursuing the long view of sustainability 
of the built environment, whence Challenge # 11 derives.

Technological Diversity and Ecological Resilience

To summarize, we have models for all manner of human 
agency in respect of harvesting from the landscape the 
intakes of daily bread and daily water fueling the city’s 
metabolism, but yet not in respect of what is required 
to assimilate the residuals of this metabolism back into 
the city’s environment. And it is human agency in this 
latter, as in choices over the adoption of one household 
technology over another, that will be key in moving 
towards greater sustainability of the built environment.

Does this lacuna arise because there is something rightly 
too intimate and personal about the choices we make 
over “diets and waste”, as Kaye et al (2006) call them? 
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Perhaps not, for contrary to the widespread sense of our 
coming to a kind of historical closure in environmental 
engineering, typical of which is this from Brown Gaddis 
et al (2007),

Remaining point sources of pollution are 
related to monetary and regulatory problems 
rather than technology shortfalls.

we stand instead on the threshold of potentially 
radically different ways of conceiving of the 
technologies of metropolitan water infrastructure, 
spurred on precisely by the sustainability debate. 
The customary “water-centric” view of the built 
environment of the city, wherein pollutants are to be 
removed from water in the wastewater infrastructure, 
has a complement: a nutrient-focused perspective, 
under which water is instead to be removed from the 
resources of nutrients (and other energy-carriers). 
Some of the principles for such re-thinking of the city’s 
built environment are adumbrated in McDonough and 
Braungart (2002).

To conceive then of things in the round — to be 
confronted with computational assessment of a single, 
constituent, technical innovation (a novel membrane 
technology for chemical-species separation, for 
example) in respect of its long-term, inter-generational 
sustainability, within an entire infrastructure of 
a city, whose metabolism should be gauged for its 
impact on the web of literally global material cycles in 
which it is suspended — is an engineering challenge 
in its own right. It is one entirely consistent with the 
recommendations from the NSF’s (2006) blue-ribbon 
committee on Simulation-Based Engineering Science 
(SBES). When such an enormous intellectual gap must 
be spanned — between the urgent pragmatism of 
today’s municipal engineering (of the unattractive but 
essential services we would rather take for granted) and 
the radically different, imagined alternatives several 
generations hence in the future — grounding the 
debate in the quantitative analyses of environmental 
models (M), including the computational virtual 
realities of SBES, will be indispensable.

For how else might we puzzle out the system-wide 
implications of constituent, technological innovation Ti 
within the host of other technological components of 
which entire infrastructures are comprised, i.e., i = 1, 2, 
..., m, where m is large? How critical is the presence of 
some other technology (Tj

) in the infrastructure for Ti 
to be a success? How else should we make even vaguely 
convincing the distant visions of the target “end-
points” (Ek

) of infrastructure re-engineering, with k = 

1, 2, ..., n, and allowing these as necessary to be several, 
not singular, in line with the plurality of a community’s 
aspirations for the future? Which immediate 
candidate innovations (Ti

) might be key — under 
gross uncertainty — in enabling paths of transition 
away from today’s status quo towards any, if not all, of 
the socially legitimate, inter-generational aspirations 
Ek? Through what framework of adaptive community 
(social) learning might quantitative assessment (M) of 
the choices over Ti bestow {social legitimacy} on the 
paths of transition? Or how should we gauge progress 
away from unsustainability without the simulated 
means to approximate the behavior of the pre-existing 
natural capital, ecosystem services, and biogeochemical 
fluxes of the watershed prior to arrival of the city (in 
geological time)?35

When Challenge # 4 was composed, on universal 
science issues of a biological nature, our discussion 
traversed an arc scaling up from the smallest of cellular 
details to an earth systems perspective and then back 
down to behavior within the cell (in Chapter 2.4). 
Facets of the same great expanse of heterogeneous 
scales of consideration have already re-surfaced 
in our brief examination of how the EOs might be 
turned towards observing the big picture, with people 
emphatically included therein. Now, in furthering 
responses to Challenge # 11, with its call for a “better 
strategic alignment of urban metabolism with that 
of ecosystem services”, the questions just posed — 
in respect of developing models for imagining and 
assessing the technological composition of the built 
environment — likewise fall unavoidably and untidily 
across a variety of scales of analysis, as related in Box 8.

The beginnings of possible answers to some of these 
questions raise other questions, not surprisingly, about 
the lines of responses to other facets of Challenge # 11. 
In Box 8 we enquire in passing whether there might 
not be a “material-minimal” sequence of technological 
innovations, for example, implying that this would be 
more environmentally benign. Challenge # 11 itself 
deliberately begged the rhetorical question: should it 
not be the case that Information and Communications 
Technologies (ICT), the essence of an environmental 
cyber-infrastructure, are more environmentally benign 
than other forms of technological innovations?

Motivated by Challenge # 9 (of science and engineering 
in “real time”) at least two schools of thought on the 
options are possible. Consider a scale of infrastructure 

35  All questions motivating the computational analyses 
in Beck et al (2009).
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BOX 8

Scale-dependent Technology Assessment, Models, and Sustainability

Challenge # 11 asks “what kinds of models should be developed in order to promote a better strategic 
alignment of the study of urban metabolism with that of ecosystem services, all within the web of 
global biogeochemical cycles”?

Technically lay citizens make decisions about what technological apparatus deserves space in their 
households; municipalities and utilities must assess which technological innovations offer benefi ts 
on a system-wide basis, shunning the temptation to optimize the part, while pessimizing the whole; 
watershed authorities might eventually wish to evaluate innovation Ti as a net contributor to enhancing 
ecosystem services; while some other actor in a future institutional pattern of global governance could 
require assessment of Ti for its restitution of the pre-industrial global cycling of nitrogen.

In this Box, we examine what kinds of models and computational analyses could support responses to 
Challenge # 11 along these lines. They must clearly recognize the predominant feature of scale, as well 
as the signifi cance of cross-scale interactions. No amount of household re-plumbing could deliver 
benefi ts at the watershed scale without commensurate actions by municipalities, as we shall see.

Household

Within the long view of sustainability, there are those who argue that the General Agreement on 
Trade and Services (GATS) can only but add to the increasing role of private-sector actors in the 
provision of water infrastructure (Mondello, 2006). Others assert that good governance must fl ow 
from the involvement and essential leadership of public-sector actors (Hooper, 2006), while yet 
others note the signifi cance of civil-society (non-governmental) actors, especially in respect of rural 
irrigation infrastructure (Mostert, 2006).1 The three sets of actors have differing attitudes towards risk, 
fundamentally different outlooks on the Man-Environment relationship, and just as different a set 
of views on the economies (and dis-economies) of various scales of industrial production — hence 
different preferences on the nature of technological innovations each would adopt (Schwarz and 
Thompson, 1990; Thompson, 2004). Different public debates amongst the three typologies (Kwame, 
2007), determining different outcomes of infrastructure development, will be engaged at the level of 
the household, the neighborhood, city district, the city, the watershed, and across and amongst these 
various levels. Society’s aspirations Ej are scale-dependent, we should therefore suppose (IWA, 2007).

What Janssen and Carpenter (1999) achieved in applying agent-based models for studying the 
evolution of ecological resilience over the (very) long-term in coupled farmer-rural landscapes would 
be one point of departure into the present domain of examining, say, socially robust paths, patterns, 
and possibilities of metropolitan water infrastructure. There might even be elements of fashion (a 
“herd instinct”) in the adoption of household technologies and appliances; and the model might be 
charged with exploring when mass change should/should not be induced or promoted, how exactly, 
and whether this is ethical.

1  Th ere is historical evidence, nonetheless, of such cultures and traditions of rural water governance being introduced into 
the urban setting through the rural-to-urban migration of people and communities (Barraqué et al, 2006).
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Local (city)

Assuming such sweeping, collective choices were to occur at the level of many households, enabling 

thus strategic, macroscopic innovation (Ti), of “separation at source” of the residual fl uxes of the 

city’s metabolism, we know that the conventional unit-process models of infrastructure simulation 

(Vanrolleghem et al, 2005) can be used to assess the system-wide implications of that innovation. So 

too can the caricature of the  mathematical program in the introduction to this last technical Challenge 

(for instance, Tsai et al, 2004). Assessment could be referenced to the pejorative “end-of-the-pipe”, or 

to locations within the watershed, but would require new criteria of assessment, even for the relatively 

straightforward bottom line of {environmental benignity}, as foreshadowed in Beck (2005a). Measuring 

progress towards the pristine spectrum of temporal disturbances of the watershed, which gave rise to the 

ecological assemblies, their dynamic resilience, and their portfolio of ecosystem services as found prior 

to the arrival of the city, would be subject to the now famous tyranny of scales recalled, yet again, above. 

Less immediately obvious is how any model might be constructed and applied in order to chart future 

paths of transition intended to serve the current paradigm of treating nutrients in wastewater as pollutants 

of which simply to be rid, if it turns out to be a conceptual cul-de-sac. How today should we plan to adapt 

contemporary engineering and technological upgrades, if they can already be discerned as potential 

“retrogrades” under an alternative, complementary paradigm where these nutrient fl uxes are regarded 

as resources to be recovered? Is there a cost- and material-minimal sequence of initial adaptations that 

maximizes fl exibility in subsequent adaptations driven by such a possible sea-change in outlook?

Regional (watershed)

Conservation and restoration ecologists, in concert with ecological economists, have elevated our thinking 

on sustainability to the heights of the grand economic and ecological notions of natural capital and 

ecosystem services (Aronson et al, 2006; Farley and Daly, 2006; Kremen, 2005). What form of model, under 

what EO operating protocol, could be tasked with computing how much natural capital and ecosystem 

services could be restored in the watershed (and beyond) by incorporating constituent technology Ti into 

the city’s water infrastructure?

More specifi cally, how exactly might the classical technology of the activated sludge process of wastewater 

treatment be re-engineered (innovation Ti) so as to serve better this much broader objective? The question 

ranks as but the “smallness” of a footnote to Kremen’s (2005) tabulation of the “largeness” of global 

ecosystem services classifi ed according to the Millennium Ecosystem Assessment (Carpenter and Folke, 

2006). And in that sense “thinking globally, acting locally” is epitomized — and the sweeping traversal 

across scales from Challenge # 4 echoed, in its call for research on universal science issues of a biological 

nature (Chapter 2.4). Few ecosystems can be readily experimented with in the interests of advancing 

the science of Ecology. The microbial ecosystem of the activated sludge process is a salient exception, 

precisely because of its engineered form. Cited for this purpose by Kremen (2005), Graham and Smith 

(2004) promote the idea of “designed ecosystem services”. Moreover, they look to the development and 

application of models (M) as the means to articulate and realize this idea (Saikaly and Oerther, 2004), 

rekindling the youthful exuberance, as it were, of systems ecology in the 1960s and 1970s, which had briefl y 

penetrated environmental engineering (Curds, 1973a,b).

Just as the trading of permits between urban and rural actors is facilitated at the watershed scale, 
in the interests of reducing pollution of the aquatic environment through the discharge of nutrient 
fl uxes as wastes, so too can the intermingling of technological innovations in the water, agricultural, 
and energy sectors be facilitated — at the watershed scale. Diffuse, nutrient-rich runoff from the 
spreading on pasture land of litter from intensive poultry production can be substituted by the 
recovery of a biofuel and a fertilizer. What kind of model and EO functions would be needed to 
further this kind of possibility and to assess its implications for the restoration of ecosystem services?

Global

Without courting the intellectual paralysis of the systems analyst,2 we know that developments in 
all economic sectors are inter-related, in particular, in the water, energy, and agriculture sectors. We 
know too that in the late 20th Century industrial, anthropogenic N fi xation from the atmosphere 
overtook natural terrestrial N fi xation (Galloway and Cowling, 2002; Galloway et al, 2004); that Man’s 
predominant appropriation of nutrients and water is in producing foodstuffs (and fi ber) in the rural-
agricultural domain; and that only 14% and 4% of the N applied to the land as fertilizer reaches 
our mouths in our daily bread, as a function of whether or not, respectively, we are vegetarian; but 
that soon the majority of the world’s population will be urban dwellers; that it is in the cities where 
dietary choices may have the greatest scope for change; that the making of these choices will send 
increasingly clear signals to farmers in the rural surrounds and hinterlands of cities, as to what kinds 
of food the market desires to be produced (SIWI-IWMI, 2004); and that — beyond human choice over 
diet — historic changes in the technologies of urban water infrastructure, in particular, in respect of 
handling the biological residuals of the city’s metabolism of its daily bread, can have an important 
impact on the paths by which nutrients and other materials cycle around the globe (Barles, 2007; 
Sokka et al, 2004; see also Box 7).

Skirting around the issue of whether personal diets can and should be adapted in the interests of 
lessening the unsustainability of the built environment, we put this question: what kind of model 
could be constructed for assessing which technological innovations (Ti), and which paths towards 
alternative future metropolitan water infrastructures, might lower the global nutrient (and water) 
metabolism, i.e., uncouple human and economic development from industrial N fi xation, and all 
under the prospect of global climate change? Such questions are studied formally with models in 
the energy sector, in respect of strategies for mitigating climate change (Lempert, 2002). Why should 
this not be the case in the sectors central to this White Paper? Why also, to mirror the interchange 
of rural (ecological) and urban (engineering, infrastructure) perspectives noted in Box 7, should not 
agricultural-, chemical-, and energy-sector businesses begin to look more favorably and aggressively 
on resource recovery from the urban wastewater infrastructure (and its hitherto predominantly water-
centric commerce)?

2  Who recognizes that all things are related to each other, but analysis of their interactions is intractable, since every thing 
seems equally essential to everything else, leaving thus undecided what should be left  out in composing the model (M).
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Local (city)

Assuming such sweeping, collective choices were to occur at the level of many households, enabling 

thus strategic, macroscopic innovation (Ti), of “separation at source” of the residual fl uxes of the 

city’s metabolism, we know that the conventional unit-process models of infrastructure simulation 

(Vanrolleghem et al, 2005) can be used to assess the system-wide implications of that innovation. So 

too can the caricature of the  mathematical program in the introduction to this last technical Challenge 

(for instance, Tsai et al, 2004). Assessment could be referenced to the pejorative “end-of-the-pipe”, or 

to locations within the watershed, but would require new criteria of assessment, even for the relatively 

straightforward bottom line of {environmental benignity}, as foreshadowed in Beck (2005a). Measuring 

progress towards the pristine spectrum of temporal disturbances of the watershed, which gave rise to the 

ecological assemblies, their dynamic resilience, and their portfolio of ecosystem services as found prior 

to the arrival of the city, would be subject to the now famous tyranny of scales recalled, yet again, above. 

Less immediately obvious is how any model might be constructed and applied in order to chart future 

paths of transition intended to serve the current paradigm of treating nutrients in wastewater as pollutants 

of which simply to be rid, if it turns out to be a conceptual cul-de-sac. How today should we plan to adapt 

contemporary engineering and technological upgrades, if they can already be discerned as potential 

“retrogrades” under an alternative, complementary paradigm where these nutrient fl uxes are regarded 

as resources to be recovered? Is there a cost- and material-minimal sequence of initial adaptations that 

maximizes fl exibility in subsequent adaptations driven by such a possible sea-change in outlook?

Regional (watershed)

Conservation and restoration ecologists, in concert with ecological economists, have elevated our thinking 

on sustainability to the heights of the grand economic and ecological notions of natural capital and 

ecosystem services (Aronson et al, 2006; Farley and Daly, 2006; Kremen, 2005). What form of model, under 

what EO operating protocol, could be tasked with computing how much natural capital and ecosystem 

services could be restored in the watershed (and beyond) by incorporating constituent technology Ti into 

the city’s water infrastructure?

More specifi cally, how exactly might the classical technology of the activated sludge process of wastewater 

treatment be re-engineered (innovation Ti) so as to serve better this much broader objective? The question 

ranks as but the “smallness” of a footnote to Kremen’s (2005) tabulation of the “largeness” of global 

ecosystem services classifi ed according to the Millennium Ecosystem Assessment (Carpenter and Folke, 

2006). And in that sense “thinking globally, acting locally” is epitomized — and the sweeping traversal 

across scales from Challenge # 4 echoed, in its call for research on universal science issues of a biological 

nature (Chapter 2.4). Few ecosystems can be readily experimented with in the interests of advancing 

the science of Ecology. The microbial ecosystem of the activated sludge process is a salient exception, 

precisely because of its engineered form. Cited for this purpose by Kremen (2005), Graham and Smith 

(2004) promote the idea of “designed ecosystem services”. Moreover, they look to the development and 

application of models (M) as the means to articulate and realize this idea (Saikaly and Oerther, 2004), 

rekindling the youthful exuberance, as it were, of systems ecology in the 1960s and 1970s, which had briefl y 

penetrated environmental engineering (Curds, 1973a,b).

Just as the trading of permits between urban and rural actors is facilitated at the watershed scale, 
in the interests of reducing pollution of the aquatic environment through the discharge of nutrient 
fl uxes as wastes, so too can the intermingling of technological innovations in the water, agricultural, 
and energy sectors be facilitated — at the watershed scale. Diffuse, nutrient-rich runoff from the 
spreading on pasture land of litter from intensive poultry production can be substituted by the 
recovery of a biofuel and a fertilizer. What kind of model and EO functions would be needed to 
further this kind of possibility and to assess its implications for the restoration of ecosystem services?

Global

Without courting the intellectual paralysis of the systems analyst,2 we know that developments in 
all economic sectors are inter-related, in particular, in the water, energy, and agriculture sectors. We 
know too that in the late 20th Century industrial, anthropogenic N fi xation from the atmosphere 
overtook natural terrestrial N fi xation (Galloway and Cowling, 2002; Galloway et al, 2004); that Man’s 
predominant appropriation of nutrients and water is in producing foodstuffs (and fi ber) in the rural-
agricultural domain; and that only 14% and 4% of the N applied to the land as fertilizer reaches 
our mouths in our daily bread, as a function of whether or not, respectively, we are vegetarian; but 
that soon the majority of the world’s population will be urban dwellers; that it is in the cities where 
dietary choices may have the greatest scope for change; that the making of these choices will send 
increasingly clear signals to farmers in the rural surrounds and hinterlands of cities, as to what kinds 
of food the market desires to be produced (SIWI-IWMI, 2004); and that — beyond human choice over 
diet — historic changes in the technologies of urban water infrastructure, in particular, in respect of 
handling the biological residuals of the city’s metabolism of its daily bread, can have an important 
impact on the paths by which nutrients and other materials cycle around the globe (Barles, 2007; 
Sokka et al, 2004; see also Box 7).

Skirting around the issue of whether personal diets can and should be adapted in the interests of 
lessening the unsustainability of the built environment, we put this question: what kind of model 
could be constructed for assessing which technological innovations (Ti), and which paths towards 
alternative future metropolitan water infrastructures, might lower the global nutrient (and water) 
metabolism, i.e., uncouple human and economic development from industrial N fi xation, and all 
under the prospect of global climate change? Such questions are studied formally with models in 
the energy sector, in respect of strategies for mitigating climate change (Lempert, 2002). Why should 
this not be the case in the sectors central to this White Paper? Why also, to mirror the interchange 
of rural (ecological) and urban (engineering, infrastructure) perspectives noted in Box 7, should not 
agricultural-, chemical-, and energy-sector businesses begin to look more favorably and aggressively 
on resource recovery from the urban wastewater infrastructure (and its hitherto predominantly water-
centric commerce)?

2  Who recognizes that all things are related to each other, but analysis of their interactions is intractable, since every thing 
seems equally essential to everything else, leaving thus undecided what should be left  out in composing the model (M).
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reconstruction varying between 0% and 100%. To 
exaggerate, let it now be bounded at the two extremes 
by: (i) a 0% strategy, in which not one brick of the 
urban water infrastructure is therefore removed, except 
for inserting the small boxes housing instrumentation 
and real-time control devices — the essence of 
“intelligence” and “deftness of movement” enabling the 
city to act as a force for good in the environment; and 
(ii) a 100% strategy, in which everything is demolished 
— including the vast hull of the sunk historical 
investment in plumbing, pipe networks, channels, 
tanks, and so forth — as the prelude to building 
completely anew.

Elaborated thus, there might well be a prima facie 
case for asserting that the “hard path” of a 100% 
reconstruction strategy (changing the structure) should 
suffer from a large ecological/carbon footprint arising 
from the movement, if not the recycling, of so much 
material. In contrast, the “soft path” of the 0% strategy 
— the ICT path, of changing the function of the 
infrastructure — ought not to be so disadvantaged.36 
It might not, in other words, constitute a strategy of 
dematerialization, but it might avoid the prospect of 
serious further “materialization”.

It could even be argued that in its “pure” form the 
“0% school of thought” should seek — in the spirit of 
Challenges # 4 and # 5 — to suffuse the entire system 
of infrastructure with ecological resilience by applying 
control “externally”, without indeed moving barely a 
brick. This, however, could arguably make the system 
increasingly prone to cascading failures arising from a 
growing reliance on precisely the kind of ICT required 
for effecting communication and operations from 
“without” (Zimmerman, 2001; Rinaldi et al, 2001; 
Little, 2002). Such vulnerability would be heightened in 
the face of high-frequency (fast-acting), high-amplitude 
threats. The soft path of the pure strategy could thus 
yet run the risk of coming to epitomize (again) the 
brittleness of Holling’s engineering resilience (Holling, 
1996).

There could, then, be significant merit in the 
alternative: of something approaching the caricature 
of the 100% school of thought, whereby ecological 
resilience is progressively designed into the structure 

36  Such a “soft path” towards distant community aspira-
tions might not only be very different from that envisaged by 
Gleick (2003) in his original coining of this phrase. It might 
also even retain the hull of the city’s sunk investment of past 
decades and centuries in its unreconstructed (and currently 
much denigrated; Niemcynowicz, 1993) centralized forms of 
sewerage and wastewater treatment.

of the system, as opposed to somehow being enacted 
through real-time operations from “without”. We take 
one last glance, therefore, at our biological metaphor 
of the city as a sentient organism, therefore, in order 
to add one further extension to the construction 
of Challenge # 9, built upon the inter-disciplinary 
thinking of Challenge # 5, under which Holling’s 
notion of ecological resilience was first introduced.

We know from the preamble to those earlier 
Challenges that ecological resilience in behavior over 
time is a function of the inter-play amongst relatively 
slowly changing (low-frequency) and relatively swiftly 
changing (high-frequency) components of behavior, 
i.e., cross-spectrum interactions (Carpenter and Folke, 
2006). We are aware from the present Challenge # 11 
(including Box 7) that an EO turned towards observing 
the big picture of sustainability should not abandon 
observation of the fast for observation of the slow 
alone, or vice versa. We are likewise aware from Box 
8 of the multiple spatial scales over which candidate 
technological innovations within the built environment 
(Ti) are active and influential. We know too from the 
introduction of Challenge # 5 that ecological resilience 
has companion interpretations in respect of cross-scale 
interactions. To recapitulate (Peterson et al, 1998):

[E]cological resilience is generated by diverse, 
but overlapping, function within a scale 
and by apparently redundant species that 
operate at different scales, thereby reinforcing 
function across scales.

The combination of a diversity of ecological 
function at specific scales and the replication 
of function across a diversity of scales 
produces resilient ecological function.

What principles for re-designing the dynamic 
performance of a city’s water infrastructure could we 
derive from these, through merely substituting the word 
“species” by “unit process technology” Ti (and eliding 
thus, one last time, the disciplinary and conceptual 
distinctions amongst Engineering, Ecology, and Cellular 
Biology)?

In the absence of some study or assessment with a 
model (M), all this will readily be recognized for 
what in fact it is: yet more provocative, speculative 
questioning. Engaging in constructive disputation 
amongst the differing, archetypal schools of thought on 
infrastructure re-engineering will not progress far or 
fruitfully without, for instance, charging both with the 
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task of coming up with strictly comparable accounts 
of the sustainability or otherwise of their respective 
paths — of soft (→0% reconstruction) versus hard 
(→100% reconstruction). Those alternative paths must 
proceed from the initial conditions of today’s hull of 
conventional centralized wastewater infrastructure and 
arrive at, say, the target end-point of the perfect fertilizer 
aspiration (Ek), generations hence. The purpose of 
Challenge # 11 is to invite considerations of what kinds 
of M, novel or otherwise, will be needed to buttress — to 
corroborate or refute — such grand conjectures.

Empirical studies of ICT innovations, in general, beyond 
the water sector of the built environment, indicate rather 
a “rebounding” effect of re-materialization (Berkhout 
and Hertin, 2004; but see also Kander, 2005). Even 
in our narrower context of the EOs, in respect of the 
impact of ICT, Challenge # 11 remains just that: an open 
question as to what exactly should be the role of models 
(M) in exploring the role of the future environmental 
cyber-infrastructure in the de-materialization of Society.

Separating Formal Model Computations from Public 
Debate and Democracy

Looking back to the 19th Century, medics, clerics, 
lawyers, and like members of the scientifically lay public 
offered their opinions on what should be done about 
urban sewage and sewerage; and they were heeded by 
the engineers of the day. By the second half of the 20th 
Century, in the then modern age of the technocracy, it 
became progressively easier to presume that scientific 
and engineering professionals would “know best” 
about the interaction between the built and the natural 
environment and, therefore, how to manage its growing 
technical sophistication. Less and less attention was paid 
to the perceptions and insights of lay members of the 
public.
With the arrival of the internet, all this has changed. 
Technocracy and a hegemony of expert knowledge in 
the affairs of environmental management are yielding 
to a form of participatory democracy (Darier et al, 
1999). The lay public increasingly has an independent 
“voice”, and the wherewithal to give expression to that 
voice with a rising volume to an ever larger audience, 
through websites and blogs, for instance. Scientists 
and engineers are no longer perceived as utterly in 
command of “value-neutrality”, clinically distanced 
somehow from the problem to be dissected on the 
surgeon’s operating table, but instead a part of the 
problem (witness Hare et al, 2006). Some have argued 
that the engineering professional’s struggle to maintain 
value-neutrality is even an impediment to progress 

when it comes to shifting away from unsustainability of 
the built environment (Davis, 2008).

On the threshold of the millennium, Gibbons 
(1999) used the platform of a special supplement to 
Nature to argue that Science was in need of a new 
contract with Society; that for two centuries Science 
had spoken unto Society; but that now Society was 
increasingly likely to speak back to Science, as it were. 
In keeping with this contemporary mood, the 2006/7 
Grand Challenges Committee of the US National 
Academy of Engineering insisted on its essays being 
understandable, in principle, by all. Whatever were to 
emerge as the grand challenges for engineering in the 
present century, they should have been fully debated 
by the public at large — through a dedicated Academy 
website (www.engineeringchallenges.org).

In introducing our last technical Challenge, we began 
by drawing a caricature of a mathematical program, 
of how to determine “optimal” courses of action 
enabling Society to move along a path towards greater 
sustainability of the built environment. The expectation 
was of discomfort amongst our community over the 
computational treatment of personal preferences when 
reflected in our models (M).

There will indeed be those kinds of environmental 
problems that are amenable to being addressed 
and resolved using quantitative methods from the 
traditional engineering toolkit, in which case the fine 
line separating this form of technical analysis from 
public debate and democracy might well be able to 
penetrate deep into the property of {social legitimacy}. 
In others, it will be decidedly inappropriate, with 
that line barely able to penetrate the property of 
{environmental benignity}. This tension, in where to 
draw the “fine line”, is encapsulated in Fenner (2008), 
who juxtaposes the sharply opposed and succinct 
desiderata of two pre-eminent Physicists (Lord Kelvin 
and Einstein) on the matters of measurement and 
quantification. There may even be no common ground 
for formal agreement amongst the various groupings of 
stakeholders on the science underpinning projections 
of what constitutes “doing well” by the biosphere, 
let alone on the form of democracy, debate, and 
governance through which the “doing well” can be 
witnessed by most, if not “all”, as about to be done.

Models and their forecasts are of interest to the public: 
through works of fiction (Crichton, 2004); through 
programs on future threats to our environment 
aired on the National Geographic and like television 
channels; and through well informed accounts of 
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Science prepared for a general, scientifically lay 
readership (Mooney, 2007). In this instance (Mooney, 
2007), as we have already observed, such accounts turn 
out to be shaped by questions we too have identified as 
core issues for this White Paper — Challenges # 9 (on 
philosophy) and # 7 (on system identification) — yet 
seemingly so subtle as to be generally regarded as at 
the edge of the mainstream, even for scientists and 
engineers.

Models — expressly — matter now at the Science-
Society interface. The wheel, in this sense, never quite 
turns full circle. The means of supporting a two-way 
dialog between Science and Society are vastly different 
today than a century or so ago. The means to envision 
longer-term futures, and the possible paths towards 
them, including through the invention, diffusion, 
and adoption of novel technologies, would 100 years 
ago have seemed inconceivable. The technologies of 
scientific visualization and virtual reality (amongst 
the destinies of environmental modeling) must 
themselves have seemed unimaginable. Whereas once 
it was the artist’s sketch that was used to convey an 
impression of our futures — and still must be used for 
succinctness on the printed page (as in Carpenter and 
Folke, 2006) — it will increasingly be the computer-
animated film, the virtual simulator chamber (Hall 
and O’Connell, 2007), or encounters within the context 
of Second Life (WATERS, 2008). Achieving {social 
legitimacy} has risen to the status of primus inter pares 
amongst the three bottom lines in the global search for 
technical solutions contributing to progress away from 
unsustainability.

We are already sufficiently equipped to simulate the 
interaction over the decades between (simulated) man 
and (simulated) environment. In that virtual reality, 
“man” can be an agent primed with the rules of one 
perspective on the Man-Environment relationship, 
from amongst a plurality of such culturally conditioned 
outlooks, and be primed too with the capacity to learn 
and adapt “his” behavior as “he” moves through time 
in an environment populated by other agents (Janssen 
and Carpenter, 1999). Movement of the simulated agent 
through the simulated environment over a span of time, 
and the insults and injuries “he” suffers from exposure 
to harmful substances in that environment, can also be 
tracked in a complex suite of software for risk assessment 
(TRIM.Fate; www.epa.gov./ttn/fera/trim_fate; see also 
Efroymson and Murphy, 2001). There is talk of building 
“electronic crash test dummies” (Clarke, 2004). It is not 
hard to imagine the “span of time” eliding into the entire 
life of the simulated agent, with simulated preferences 
over modes of transport and other matters of life-

style, presumably too “his” diet therefore, with all such 
preferences being conditioned and negotiated within 
the community of other simulated agents, through 
the computational game theory we already know 
(Dieckmann and Metz, 2005; Levin, 2006; or Ohtsuki 
and Iwasa, 2006).

As a real stakeholder observing your simulated, 
virtual self as participant in a proposed strategy for 
moving away from some unsustainable pattern of 
behavior — for example, in restoring a suburban 
watershed degraded by excessive use of garden 
fertilizer — what would you conclude and learn from 
such an exercise? Would the simulation add to, or 
detract from, the social legitimacy accorded to the 
strategy? And taking the long view, as your personal 
(private) simulated self becomes ever more life-like, 
what are the ethics of exploring options for collective, 
public policy in this manner? How comfortable 
should any of us feel about this?
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4.3 Community Structure

Any self-respecting exercise in assembling grand 
challenges from any given community of scientists, 
engineers, and scholars, will face the final challenge 
regarding that community’s self-determination and 
self-education in responding to the scientific and 
technical challenges it has expressed. Our White Paper 
will be no exception. Indeed, in many ways what is 
being recommended in the following (in Chapter 5) 
reiterates what has already been recommended in 
the National Research Council’s earlier set of “Grand 
Challenges in Environmental Sciences” (NRC, 2001). We 
make no apologies for being repetitious in this respect. 
For some of the challenges we face — in changing 
ourselves — are recalcitrant, universal, and the very 
grandest of all.

Looking thus inwards, towards our own community, 
we offer this cartoon of the (May, 2006) Tucson 
workshop:

Speaker A, from discipline X, presents 
his view of future challenges in his native 
discipline, and with some enthusiasm and 
conviction. Participant B, from discipline 
Y, quips that he has just heard a very nice 
presentation, but then he wonders — aloud 
— where speaker A has been for the past 30 
years.

This exchange happened, specifically in respect of data 
assimilation (herein Challenge # 9 now). Its expression 
in the form of a cartoon preserves anonymity, not least 
because the very same wonderment (at one’s scientific 
whereabouts these past three decades), could have been 
leveled at Participant B himself, by Participant C from 
Discipline Z.

Challenge # 12:

What steps can the community of model-
builders in the Environmental Sciences take 
to pre-empt and reduce to a minimum the 
still readily apparent scope for re-inventing 
the “wheels” of modeling in contemporary 
research across the various disciplines of 
the EOs? How can our community best 
be organized so as to benefit as much 
as possible from novel developments in 
modeling in general, as they arise in, for 
example, the quite disparate disciplines 
of the biomedical sciences, social sciences, 
cognitive sciences, artificial intelligence, 

and artificial life? More broadly, how should 
the community of modelers best work with 
the community of primary field scientists to 
promote the development of models for basic 
scientific discovery at the interfaces amongst 
multiple disciplines? In the light of universal 
and ever-more urgent calls for profound 
changes in the manner in which the next 
generation of scientists and engineers is 
educated, trained, and formed — all of 
which calls focus on “inter-disciplinarity” 
— what special role can models serve in 
meeting these needs?

Looking across the grand Challenges expressed above, 
none calls as much for investments in equipment, 
computing, specialized field campaigns, and so 
on, as it does for investments in changing habits of 
mind. These are mind sets, in particular, of a kind 
of “tunnel vision”, with its part unconscious, part 
seemingly wilful “blind spots”, fully capable of giving 
birth to the foregoing cartoon from the Tucson 
Workshop. Inasmuch as not all of us have the talents 
for becoming an astronaut or brain surgeon, not 
everyone is suited to engaging fully and effectively in 
inter-disciplinary work, including when the object of 
enquiry is the development and application of models.

Turning now to peer outwards from the enclaves of 
modeling, those of us who consider we are modelers 
first and foremost should readily admit to our 
ignorance: we should hesitate to venture opinions 
on how others ought to conduct their affairs in 
enquiring into the nature of the biogeochemistry of 
aluminum speciation in forest soils or the existence 
and role of the microbial loop in the foodweb of 
an impoundment. Just about everyone, however, 
whether modeler or not, appears to have an opinion 
on how modelers should conduct their affairs, and 
quite strong ones at that: witness the recent book 
of Pilkey and Pilkey-Jarvis (2007) and the earlier 
observations on how modelers, as a professional 
solidarity, are not always held in high social esteem 
amongst the broader community of scientists. While 
we believe that computational model-building should 
be viewed as a free-standing discipline in its own 
right, our purpose herein is not perversely to promote 
ignorance in others, by being deliberately obscure, 
opaque, or obfuscating in communications across 
from the domain of “modeling expertise” outwards to 
all others (just as Schaffer (1993) has recorded of the 
soothsayers of old). It is to nurture humility.



PART III: 

RECOMMENDATIONS & 
CONCLUSIONS





Chapter 5: Ways Forward  111

After the NRC Committee (NRC, 
2001) had expressed its Grand 
Challenges for Environmental 
Sciences it went on to make 

recommendations for immediate investments in 
research and then to discuss issues of implementation, 
including “building capacity for interdisciplinary, 
problem-oriented research”, itself the subject of 
another, more recent NRC report on Facilitating 
Interdisciplinary Research (NRC, 2004). We too shall 
be much concerned with this issue, as we now go about 
indicating some ways forward in response to our own 
grand challenges, with special reference to models as 
the lingua franca for communication across many — 
but not all — of the disciplinary domains upon which 
those challenges touch.

5.1 Models, the Lingua Franca, and Becoming 
Inter-disciplinary

Consider again, as in the introduction to this White 
Paper, the image of a model as the vessel into the 
holds of which the contributions from all of the 
relevant disciplines must be poured in a consistent 
and compatible manner. The systematic character of 
model-building, together with the discipline imposed 
by the formal algorithmic and mathematical logic 
of the models themselves, can at the least assist in 
eliminating daft ideas — constituent hypotheses from 
different disciplines that do not mesh logically together 
— sooner rather than later. From the demands of such 
consistency derives the metaphor of models affording 
us a lingua franca. And in this, it is the process (of 
model building) that may be as important as the 
product (the model), if not more so.

Assembling our White Paper has itself been an exercise 
in becoming inter-disciplinary, even a reflexive self-
study. It began by introducing the simple, abstract 
triplet {u, M, y}, of the observed inputs (u), model (M), 
and observed outputs (y), and then setting out the 
attaching tasks of modeling as those of the archetypal 
mathematical textbook: given two out of these three 
unknowns, find the third. Essentially everything 
from there onwards can be tied back to the reference 
framework of this piece of elementary abstraction.

Chapter 5: Ways Forward

Horizontal Integration: Across and Beyond the 
Disciplines of the Environmental Observatories

Armed with the common language of modeling, 
we are better equipped to achieve “internal”, 
horizontal integration across the disciplines of the 
Environmental Observatories. Thus, for example, in 
setting up Challenge # 8, we were able to shed light 
on how Environmental Engineering has been largely 
conspicuous by its absence from the study of data 
assimilation, as commonly found in Hydrology and the 
Ocean Sciences, albeit less so in Ecology. Something 
of the reverse then followed. Given the triplet of {u, 
M, y}, and the notational conventions flowing from it, 
a research agenda in response to Challenge # 8 could 
be transcribed (in Box 5) from the specific domain 
of the just the Ocean Sciences — the Littoral Ocean 
Observing System (LOOPS/Poseidon; Lermusiaux et al, 
2006a) — into a more generic framework, embracing 
all four disciplines (Environmental Engineering, 
Hydrology, and Ecology, in addition to the Ocean 
Sciences).

We suggest our lingua franca should likewise enable 
extrapolation to the achievement of a significant 
measure of “external”, horizontal integration, not to 
mention significant innovation, outside the span of 
all four of these disciplines: via the development of 
models, into the biomedical sciences, on the one hand, 
and the social sciences, on the other. Ideally, we should 
be able to move with ease through and across the 
different disciplines. This was the culmination of our 
preliminary response to Challenge # 5.

We evoked there (under Challenge # 5) the image of 
simulating the sentient individual organism within its 
ecosystem, i.e., its environment containing individuals 
from its own and other species, as the means to mark 
out where some of the frontiers of research now stand 
in respect of generating novel insights into the generic, 
dynamical properties in the behavior of all systems. 
We then lifted up this image, transfigured it into an 
association with the urban ecological footprint, itself 
another metaphor, and set the result down as defining 
of a way of thinking about the kinds of model that 
might be needed for exploring sustainable development 
of the built environment (in Challenge # 11). One 



112  Grand Challenges of the Future for Environmental Modeling

Recommendations and Conclusions

should just as effortlessly be able to switch amongst 
different images and metaphors for problem-solving.

Issues of scale, brought together in Challenge # 3 as a 
core scientific challenge in their own right, returned 
to prominence as matters inextricable from designing 
Observatories and developing models, when (again 
in Challenge # 11) the long view was taken over 
pragmatic, policy-oriented tasks of re-engineering the 
built environment.

And in Box 7 under that Challenge # 11, and in the 
spirit of classical systems thinking (we may note 
in passing), some generic (and complementary) 
limitations in models (M) are extracted from three 
superficially quite different specific case studies of the N 
cycle in whole watersheds.

Vertical Integration: Outreach to Non-Modeling 
Communities

What works well about a jargon in this horizontal 
sense can become an impediment, as so obvious in 
the strident reactions of Pilkey and Pilkey-Jarvis 
(2007), when we are confronted with the need to 
achieve “vertical integration”: from the computational 
science of the environmental cyber-infrastructure, up 
through our own modeling community, to the primary 
field scientists, and on ultimately to scientifically lay 
members of the public.37 A high degree of transparency 
about the essence of the model is crucial to the 
equally vital building of trust amongst these other 
communities (Pascual, 2009).

This capacity for seeing through the inescapable 
complexity, especially of very high order models, is 
reflected in the advocacy of scientific visualization 
devoted expressly to the structure of the model, so that 
the office-bound Statistician may work with the ship-
board Marine Ecologist, in responding to Challenge 
# 7. It is just as vital when the stakeholder is not the 
model builder, but the policy person seeking support 
and guidance in the making of decisions (Challenge # 
10), or the ordinary member of the public witnessing 
the treatment of personal preferences along the bottom 
line of attempting to achieve {social legitimacy} in 
those policy decisions (Challenge # 11).

37  As already noted (Chapter 4.1) in respect of the report 
on the Seminar “A New Look at the Interaction of Scientific 
Models with PolicyMaking” (www.martininstitute.ox.ac.uk).

We all belong to a community, perhaps several of 
them. Each community has its prejudices. And models 
are not always viewed in a favorable light, as now 
abundantly clear. We observed this in introducing 
those policy-directed Challenges # 10 and # 11. Models, 
it has been said, allow the craft skills and expertise of 
the model-builder to be legitimated — made objective, 
as opposed to subjective — such that that expertise may 
be presented in an impersonal manner (Rayner, 2008). 
Since some would be much less detached in expressing 
their resentment of models and modelers, it is clear that 
our community suffers from a problem of “image”. We 
should be obliged to attempt to overcome it.

Lingua Franca: Acquiring the Skill

If the lingua franca of modeling holds out the promise 
of such advantages, when is the skill of “speaking it” 
generally acquired, and is that the best of times for 
acquiring such a skill?

No-one takes a Bachelor’s degree majoring in 
computational environmental modeling. For this is 
an advanced subject, arguably a secondary science (as 
we have said), certainly a second scientific language, 
learned later in one’s professional life (if at all), 
customarily in the years of a PhD or shortly thereafter. 
Becoming inter-disciplinary in one’s thinking needs 
to happen immediately after the first, primary 
specialization of tertiary study and training. The 
timing may be critical and the window of opportunity 
but briefly ajar. A balance must be struck between 
pre-empting onset of the mono-disciplinary tunnel 
vision at the earliest possible juncture, while not 
breaking the nascent self-confidence of those starting 
to engage in the process of being inter-disciplinary. 
Each of us needs to be reassured of having acquired 
some of the intellectual clothing of being an expert 
— in something, some single discipline, or some 
specialization — before disrobing to stand ignorant 
and humble before the expertise and disciplines of 
others. For as long as we have the pressures of gaining 
tenure in an academic system (NRC, 2004), the window 
of opportunity for acquiring the life-long skill of 
communicating across disciplines, using the language 
of modeling (in our case), will not remain open for long 
around the pre- and post-doctoral years.

To summarize, developing responses to many of the 
grand challenges of this Paper implies investments 
in the structure of our community (Challenge # 
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12), including in the education and training of the 
next generation of environmental modelers. In line 
with the ubiquitous calls for realizing greater inter-
disciplinarity in the conduct of Environmental 
Science (and elsewhere, further afield; NRC, 2004), 
we argue that model-building has a special role to 
play. Yet despite this as the focus of the project’s (May, 
2006) Tucson Workshop, even the mechanism of 
communicating amongst ourselves — as modelers from 
just the constituent disciplines of the Environmental 
Observatories — is not in perfect working order.

5.2 Recommendations

Within Community Orchestration: Substance Not Form

All that said, our first recommendation has to be this:

Recommendation # 1:

Having brought a significant proportion 
of the community together, through a 
Workshop, and now — by virtue of the 
literature reviewed herein — this White 
Paper, it would be a missed opportunity 
not to provide the wherewithal for the 
continuing active maintenance, development, 
and scientific prosperity of the modeling 
community under the EO initiatives.

But what might be the substance of such active 
management? For we can readily reach for various 
forms of organized activity: network, workshop, 
center, summer school, task force, specialist 
technical group, and so on; with each assuming 
either a real or virtual form, as enabled through the 
cyber-infrastructure. No matter their intensity and 
extent, however, the formalities of organization may 
not be the key to successful implementation of this 
recommendation.

We have the lingua franca of modeling; how should we 
now best put it to work within these various forms of 
activity?

The archetypal procedure of Applied Systems 
Analysis is supposed to function ideally as follows. 
A problem specific to “foreign” discipline F lacks a 
solution. That problem, nevertheless, has certain 
prominent, generic features, crudely recognizable to 
the applied systems analyst working predominantly 
on problems specific to his/her “native” discipline 
N. This analyst has a solution to the generic 
problem, albeit a solution attuned to the specific 
needs of discipline N. Working with a partner 
in discipline F, initially to re-shape F’s unsolved 
problem, to fit it better within the mold of N’s 
(solved) problem, the generic problem-solution 
couple can be transcribed from N to F, thus to 
liberate a solution to the previously unsolved 
problem specific to F. But this is not an end to the 
process. Given an ever improving understanding 
of the problem set — if not solution set — of the 
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foreign discipline (F), our archetypal analyst has 
growing access to translations of a set of problems 
rarely, if ever, uncovered in his/her native discipline N.

Things could begin just as well from the opposite 
perspective, of course: of a frustrated analyst in 
discipline F looking outwards from his/her own 
discipline, scanning other disciplines for a matching of 
their problem-solution couples with his/her unsolved 
problem. But s/he would have to be provoked into 
“looking outwards” in the first place. And what 
training would incline anyone so to do?

Levin (2006) gives tangible and succinct form to such 
clinical abstraction of systems thinking, in his case on 
the matter of extracting generic insights into the nature 
of adaptive dynamics in systems (and in our case, 
under our Challenge # 5):

Moving from the ecological to the social or 
economic situation simply completes the 
loop — these are ideas that had their origins 
in economics, were adapted and modified for 
biology, and now find new application in their 
original setting.

Success in implementing our first recommendation, 
then, is unlikely to be entirely a matter of form or 
format, or of the intensity, or superficially visible 
structure, of the organization behind any given activity. 
Alas, it is more likely to be dependent upon the correct 
mix of people, their personalities, and their outlooks 
on what constitutes a scientific problem worthy of their 
sustained attention.

Time is manifestly a vital factor in inter-disciplinary 
work, and in various ways:

(i) time to be given up for a brief period, 
such as at a workshop, to step out of 
the specifics of one’s personal research 
interests — groundwater contaminant 
transport; settling and compaction of 
biological flocs in wastewater treatment 
— to recognize the shared challenge, in 
modeling and forecasting the generic 
features of transient pollution events;38

38  Experience has shown, rather consistently, that such 
does not tend to happen.

(ii) time for the younger researcher on a 
fixed-term contract to ensure the first 
flush of naïve curiosity, in collaborating 
widely across disciplines, is rewarded 
sufficiently quickly, before the next career 
position has to be secured; and

(iii) time in the sense of age being on the side 
of the applied systems analyst, who must 
accumulate the experience of sufficient 
case studies in solving specific problems 
to be able to discern with increasing 
clarity those recurring problem-solution 
couples of a more generic character.39

In 1986 Holling expressed his synthesis of the “Myths 
of Nature” and their mapping onto the cyclical, longer-
term dynamics of ecological systems (Holling, 1986). 
Over the subsequent decade, anthropologist Thompson 
was able to map the social transactions amongst 
the fundamental typologies of Cultural Theory 
onto Holling’s cyclical behavior in ecosystems, with 
powerful implications for Applied Systems Analysis in 
general (Thompson et al, 1990; Price and Thompson, 
1997; and Thompson, 1997). That is one important 
exemplar of the very best of inter-disciplinary research; 
and surely an indicator of the time such can take.

Personality too will be important:

(i) in the sense of suppressing any tendency 
to scoff in disbelief at the utter simplicity 
of the problem specifications — gross 
distortions of the real-world problem —  
essential to initiating a novel procedure of 
solution;

(ii) in the dogged persistence of the solution-
provider, to work with the problem-owner 
in removing each gross assumption, one 
by one, as the solution procedure matures, 
instead of forsaking the ardor of the path 
back to the messy problems of the real 
world for the relative ease and appeal of 
the next pristine, elegant, but abstract, 
alternative, wherever it may present itself 
(elsewhere); and

39  And that aging analyst would do well to retain a 
degree of naïvety, tolerant of the seemingly impossible and 
outlandish (at first sight).
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(iii) in simply holding on to humility — an 
absence of pontificating on how others 
should mobilize their uniquely acquired 
expertise.

And there will probably be a need for a dirigiste style 
of orchestration, drawn along by the vision of a well 
targeted, tangible, and substantial end-point:

(i) the book on Panarchy by Gunderson 
and Holling (2002) was the product of a 
deliberately orchestrated network activity 
(the Resilience Alliance) sustained over 
several years;

(ii) that on Evolutionary Economics by Dosi 
et al (1990) resulted from a sequence 
of meetings and workshops dedicated 
expressly to achieving the sole outcome of 
the monograph; and

(iii) production of the monograph on 
Environmental Foresight and Models: A 
Manifesto (Beck, 2002) was fashioned 
after the process employed by Dosi and 
colleagues (and all told, took a decade to 
complete).

We recommend no specific form of community 
orchestration, therefore, merely sustaining an active 
awareness of the foregoing considerations of group 
sociology, as the basic ingredients of eventual success, 
when it comes to developing any given activity.

Having offered these general principles of community 
orchestration aimed expressly at achieving inter-
disciplinary work, our next recommendation is likewise 
not prescriptive. Rather, it is indicative of the kinds of 
actions that could be taken following publication and 
dissemination of this, our full White Paper.

Cross-Community Communication: Attaining the 
Bigger Picture

Whereas Recommendation # 1 looked primarily 
inwards, to our own professional community, this 
second recommendation is oriented towards what we 
have labeled as “outreach”, thus:

Recommendation # 2:

Given that modeling cannot proceed in a 
vacuum, detached from reality, case studies 
and case histories should be prepared and 
packaged in forms designed to serve the ever-
present need of the modeling community to 
build and maintain fruitful relationships 
with a variety of other communities — of 
philosophers, scientists, engineers, scholars, 
policy-makers, and the public — in 
developing the beginnings of responses to the 
Grand Challenges.

It is important to achieve a strategic sense of 
perspective, a sense of history. The long view is 
as important as looking outwards from our own 
professional community.

Our over-arching Challenge # 0, for example, calls for 
a perhaps unusual collaboration to be initiated between 
modelers and philosophers of science. Constructive 
engagement of the two, however, is unlikely to be 
established in the absence of the empirical evidence of 
case histories in how models and the sciences of, say, 
Ecology or Hydrology have evolved in tandem over the 
past four decades. Only now, with the benefit of such a 
significant span of history, might we be able to discern 
innovations of a strategically important philosophical 
nature.

Challenge # 7 has its sights set on a cyber-
infrastructure capable of supporting the lateral 
thinking necessary for reconciling large, very high 
order models (VHOMs) with extensive sets of 
data. Making progress on that front will require 
computational scientists and software engineers40 to 
be led through our more substantial case histories in 
the systematic identification of environmental models, 
to the points where they can diagnose why current 
software frameworks frustrate realization of the 
needed “tinkering” paradigm. Enabled now to take the 
long view over four to five decades of environmental 
modeling, significant shifts in schools of thought, 
which may have seemed imperceptible at the time, 
can be more sharply illuminated, even to dramatize 

40  Typically, those who generate the toolboxes of the 
MATLAB-SIMULINK® platform or who, like The DHI 
Group, are promoting the production of software that is 
“OpenMI™ Compliant”; atypically, perhaps, also those who 
have worked on the graphics design of the visualizations in 
Boxes 2 and 3 of Challenge # 7.
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why access to such a tinkering paradigm should be so 
important (Schertzer and Lam, 2002; Dennis, 2002).

The Seine-Paris case study (Billen et al, 2007a) is of 
strategic importance for a variety of reasons, not 
merely for its long view (which spans a thousand years 
or so), nor its relevance to opening out responses to the 
essentially scientific (Challenge # 1) and the urgently 
pragmatic alike (Challenge # 11). Indeed, we should 
be enquiring into what, therefore, in the nature of 
the funding mechanisms and community structures 
underpinning this Seine-Paris program, has made it 
something of an exemplary, inter-disciplinary case 
study — at least according to the public accounts of its 
outcomes.

Models for Design/operation of the EOs

To this general rule of mere indicative responses to 
our various Challenges, there is one notable exception, 
expressed as follows:

Recommendation # 3:

Given the maturity of Observing System 
Simulation Experiments (OSSEs), and their 
obvious potential role in the design of all the 
Environmental Observatories, investment 
in the work needed to respond to this facet 
of Challenge # 6 is recommended. In seeking 
progress on a variety of fronts, however, such 
investment should be directed beyond the 
pragmatic needs of EO design, for example: to 
furthering the social and professional aspects 
of bridging any divides between the field-
science and model-building communities; 
and to propelling OSSEs as much as possible 
beyond the current state of their art.

The WATERS Network proposes to do precisely that 
(WATERS, 2008). Its second phase of planning will 
focus on designing its EO to answer scientific questions 
informed by the somewhat heterogeneous means of 
fixed and mobile observing platforms. If formulated as 
an OSSE, embedding therein some of the principles of 
data assimilation (from Challenge # 9 and the LOOPS/
Poseidon initiative recounted in Box 5), new research 
ground should be broken in the process.

Given the initial momentum of this White Paper, 
in bringing together disciplines and schools of 

thought that might otherwise have remained apart, 
quite other lines of research are discernible. Mobile 
observing platforms, after all, are (intelligent) agents 
moving about the field. Those carrying forward the 
new frontiers in Individual Based Modeling (IBMs) 
in Ecology (Grimm et al, 2005) might therefore be 
encouraged to bring unexpected and novel challenges 
to this rather mature domain of OSSEs, data 
assimilation, and adaptive sampling, with its basis in 
models alternatively as (traditional) sets of differential 
equations.

What, however, does Society want of the EOs? Just 
as cultivation of the Grand Challenges for the 21st 
Century by the US National Academy of Engineering 
was enacted (2006/7) through public debate and the 
priorities set (2007/8) by a public voting system — and 
just as Gibbons (1999) has argued for a new contract 
between Science and Society — some of the goals 
of the EOs might similarly be so determined. How 
should models (M), scientific visualization, and all the 
facilities of the environmental cyber-infrastructure be 
turned then to such a purpose?

Training the Next Generation

Our fourth and final recommendation follows directly 
from Challenge # 12 (community structure):

Recommendation # 4:

Having argued a case in favor of the special 
role of models, as the lingua franca of 
inter-disciplinary research, we recommend 
investigating the merits of complementary 
alternatives to vehicles such as NSF’s 
Integrated Graduate Education Research 
and Training (IGERT) schemes for the 
purpose of training the next generation of 
environmental modelers.

The Education Committee of the WATERS Network 
has recently recommended a Workshop for all of the 
Environmental Observatories on the topic of Education 
and Outreach (WATERS Network, 2007b), just as 
our own project has been supported in hosting the 
Tucson Workshop of May, 2006. There is every reason, 
therefore, for us not to recommend duplication of such 
effort.
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Instead, noting that in 2007 the International Institute 
for Applied Systems Analysis (IIASA) celebrated its 
35th Anniversary and, more importantly, the 30th 
anniversary of its Young Scientists Summer Program 
(YSSP; www.iiasa.ac.at/YSSP), we suggest there may be 
much to be gained from reviewing the merits of that 
kind of Program in meeting our present needs.

A candidate description of what constitutes “inter-
disciplinarity” (for the environmental systems analyst) 
has been embedded in the foregoing discussion of 
Challenge # 12 and Recommendation # 1 regarding 
the structure of our community (see also Chapter 
5.1). Given this as a point of departure to be disputed 
and improved upon, alongside the NRC’s more wide-
ranging report (NRC, 2004) what — we should ask 
— has the YSSP correctly encapsulated, and what has 
escaped its purview, in sowing the seeds of successful 
inter-disciplinary thinking in young minds? How 
might we benefit, if at all, from the longevity and 
consistency of the YSSP, in identifying whether and 
how its alumni have actually become leaders in the 
science and practice of inter-disciplinary thinking?
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NSF’s Environmental Observatory 
initiatives promise access to 
unprecedented streams of 
observations on the behavior of 

environmental systems in situ. Excellence in developing 
models of that behavior is not achievable without both 
such volume and quality in those expected data streams.

Talk of things being “transformative” and 
“unprecedented”, however, can become a commonplace 
when large sums of money are in prospect for 
supporting ambitious programs of research. We are 
using these words advisedly, therefore.

There is a subtle, but significant point of dislocation 
— a threshold — beyond which the scope for progress 
and achievement in model-building becomes 
qualitatively different from that to which we have 
become accustomed. Hitherto, it has been typical 
for any divergence — between a model (of growing 
complexity, in general) and the relatively sparse and 
inadequate data (with which conditions, incidentally, 
we shall always have to deal) — to be dismissed as a 
consequence of those inadequate data. High volumes 
of high quality (HVHQ) data should deny such 
all-too-easy dismissal in future. Hard thought will 
have to be invested in diagnosing why the model 
is failing, not as a whole, but in which particular 
parts. And even harder thought will be called for in 
extracting the failed parts from the complex whole; 
coming up with novel hypotheses; expressing them in 
mathematical form; and re-configuring the structure 
of the model so as to accommodate the new and 
revised constituent hypotheses. This is especially true 
today in understanding the behavior of chemical and 
biological species in our environment, beyond the more 
customary measures of pH, conductivity, and dissolved 
oxygen concentration, for example.

For some members of this Committee, with access to 
monitoring platforms capable of generating HVHQ 
data, the beginnings of the transformation to such 
a qualitatively different domain of opportunities for 
research in environmental modeling have already been

 experienced.41 In so many of our Challenges this same 
kind of question recurs: what exactly is it that causes 
model and reality not to match; and how should we 
observe, diagnose, probe, and explore such a mismatch 
in order to understand and resolve it as swiftly as 
possible?

Whether we also stand on the threshold of qualitative 
change in other ways is less clear. For there has 
always been monotonic progression in our models 
of environmental systems, towards an ever greater 
scope (such as an Earth Systems perspective) and 
the inclusion of ever more detail (down to the 
biochemical metabolism of the individual cell and 
below). This progression seems now, however, on the 
verge of being cross-fertilized in rather novel ways 
by simulation of the behavior and functioning of the 
individual organism (in the biomedical sciences) and 
simulation of that individual as it negotiates a natural 
environment populated by like and other individuals 
(in the social sciences).

This same irrepressible advance in environmental 
models — and their increasing embrace of the personal 
and the private in human affairs — will eventually 
cause our professional community to step over another  
threshold, there to confront some uncommon ethical 
challenges.

41  And Kirchner et al (2004) talk enthusiastically and 
convincingly of “catching this new wave” in the Hydrologic 
Sciences.
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