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Abstract Recent studies of Chesapeake Bay hypoxia
suggest higher susceptibility to hypoxia in years after the
1980s. We used two simple mechanistic models and
Bayesian estimation of their parameters and prediction
uncertainty to explore the nature of this regime shift. Model
estimates show increasing nutrient conversion efficiency
since the 1980s, with lower DO concentrations and large
hypoxic volumes as a result. In earlier work, we suggested
a 35% reduction from the average 1980–1990 total nitrogen
load would restore the Bay to hypoxic volumes of the
1950s–1970s. With Bayesian inference, our model indicates
that, if the physical and biogeochemical processes prior to
the 1980s resume, the 35% reduction would result in
hypoxic volume averaging 2.7 km3 in a typical year, below
the average hypoxic volume of 1950s–1970s. However, if
the post-1980 processes persist the 35% reduction would
result in much higher hypoxic volume averaging 6.0 km3.
Load reductions recommended in the 2003 agreement will
likely meet dissolved oxygen attainment goals if the Bay
functions as it did prior to the 1980s; however, it may not
reach those goals if current processes prevail.
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Introduction

Coastal hypoxia (dissolved oxygen ≤2 mg L−1) has spread
worldwide since the 1960s (Diaz and Rosenberg 2008),
and has received considerable scientific and policy
attention (e.g., NRC 2000; Bricker et al. 2007), as well
as mounting documentation of its consequences (NRC
2000; Kemp et al. 2005; Turner et al. 2008). Chesapeake
Bay is a large US estuary showing increased stress from
nutrient over enrichment (Hagy et al. 2004), with low
bottom-water oxygen concentrations first reported in
the 1930s and significant increases in both severity and
spatial extent since the 1950s (Newcombe and Horne
1938; Officer et al. 1984; Cooper and Brush 1991; Boesch
et al. 2001). Boesch et al. (2001) found that, for a given
freshwater discharge rate, the observed 1982–1992 hyp-
oxic volume in Chesapeake Bay was two or more times
larger than that of 1949–1984, suggesting that a threshold
of nutrient loading or ecosystem response was reached.
Hagy et al. (2004) showed that the estuary was less
susceptible to hypoxia during 1950–1979 than in more
recent years. Kemp et al. (2005) suggested that loss of
benthic plant biomass and increased efficiency of nitrogen
(N) and phosphorus (P) recycling may contribute to the
changes in the Bay’s ability to assimilate those inputs.
Kemp and Goldman (2008) summarize the current state
of the science related to thresholds in the Chesapeake
Bay and similar ecosystems. This loss of assimilative
capacity may indicate a state change (or regime shift)
implying that disproportionately large nutrient load
reductions may be required to bring hypoxia under
control (Boesch et al. 2001). Such shifts have been
observed in other estuaries and ecosystems (Scheffer and
Carpenter 2003; Kemp and Goldman 2008), such as the
Gulf of Mexico (Turner et al. 2008), and Ringkøbing
Fjord, Denmark (Petersen et al. 2008).

As has been done for analysis of regime shifts in other
ecosystems (Scheffer and Carpenter 2003; Solow and
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Beet 2005; Genkai-Kato 2007; Savenkoff et al. 2007), we
use models to help frame the analysis in the Chesapeake
Bay. In regime shift modeling, one needs to consider the
ability of the model structure to reflect the fundamental
ecological processes, the method for estimating parameter
values, and model uncertainties assessment. Several
models have been developed for the Chesapeake Bay,
ranging from complex mechanistic models (e.g., Cerco
and Cole 1993; Cerco and Noel 2004) to simple statistical
ones (Hagy et al. 2004). Complex mechanistic models can
resolve important ecosystem processes; however, they are
often over-determined (i.e., more coefficients than state
variables and data) and require use of literature values and
expert-judgment to select key parameter values. Statistical
models are computationally more efficient and robust, but
generally do not resolve physical, ecological, and biogeo-
chemical processes. Simpler mechanistic models, com-
bined with statistical methods for parameter estimation
and analysis of uncertainties, offer an efficient path for
regime shift analysis. A rather simple model, based on the
one-dimensional Streeter-Phelps (SP) dissolved oxygen
model, has been used successfully to model Chesapeake
Bay hypoxic volumes (Scavia et al. 2006) and dissolved
oxygen concentrations (Stow and Scavia 2008), and Gulf
of Mexico hypoxic area (Scavia et al. 2003, 2004; Scavia
and Donnelly 2007). We use that formulation in the present
analysis, along with a surface-layer nutrient-driven phyto-
plankton model that has been used to explore estuarine
susceptibility in general (Scavia and Liu 2009). We use
these two simple mechanistic models with Bayesian estima-
tion of parameters and prediction uncertainty to explore the
nature of the regime shift in the Chesapeake Bay and to
revise our forecasts of future hypoxia under different loading
scenarios.

Ecological models are calibrated traditionally through
trial-and-error, which is subject to drawbacks such as inef-
ficiency, subjectivity, and unreliability (Zou et al. 2007).
More recently, Bayesian inference has been used in
environmental and ecological modeling (Malve and Qian
2006) because it provides a convenient way to combine
existing information/past experience (priors) with models
and current observations (likelihood) for projecting future
ecosystem response (posterior). Thus, Bayesian methods
can be more informative than conventional model calibra-
tion and they can be used to refine our knowledge of
model inputs and to obtain prediction uncertainty bounds
(Qian et al. 2003). This approach has several additional
advantages, including expressing model outputs as proba-
bility distributions to better quantify uncertainties, rigorous
assessment of expected consequences of different manage-
ment actions, optimizing monitoring sampling design, and
alignment with adaptive management (Reckhow 1994;
Arhonditsis et al. 2007).

Methods

Data

We use January–May average daily TN loads from the
Susquehanna River as the primary driver for predicting July
surface-layer chlorophyll concentrations and hypoxic volumes
in the mid-bay region of the Chesapeake Bay main stem,
defined as in Fig. 1 of Scavia et al. (2006). Loads for 1945–
1978 from the Susquehanna River were computed using
empirical relationships from corresponding nitrate loads at
Harrisburg, Pennsylvania (Hagy et al. 2004). Loads for 1979–
2004 were from USGS, based on frequent measurements of
Susquehanna River TN concentrations at Conowingo, Mary-
land and derived from the 7-parameter log-linear regression
model described by Cohn et al. (1989). Because Susquehanna
River loads are a major contributor to main-stem hypoxia, we
use them as a surrogate for the entire Bay.

Dissolved oxygen data are those reported in Scavia et al.
(2006) for the main stem Chesapeake Bay for 36 years from
1950–2003. The 137 sub-pycnocline average values reported
for DO profiles for each of the 36 years were computed by
interpolating observations to populate a regular grid with
dimensions, first at 1-m resolution in the vertical and then at
1-km in the horizontal across constant depths (Hagy et al.
2004). Average July main stem Chlorophyll a concentrations
are from Harding and Perry (1997) for 1950–1980 and from
the Water Quality Database of Chesapeake Bay Program
Office (http://www.chesapeakebay.net) for 1984–2003.

Streeter-Phelps (SP) Hypoxic Volume Model

This model was first applied to estimate hypoxic volumes in
the Chesapeake Bay by Scavia et al. (2006). Subsequently,
Stow and Scavia (2008) and Liu et al. (in review) used
Bayesian configurations of this model to estimate and
compare DO profile and hypoxic volume predictions under
uncertainty. The model is an adaptation of the SP river model
that predicts oxygen concentrations downstream of point
sources of organic matter loads (Chapra 1997). Chesapeake
Bay is stratified vertically in summer, with surface waters
flowing seaward and bottom waters flowing landward. As
such, a key assumption for this application was that
Susquehanna River nutrient loads approximate a point source
of organic matter (BOD) deposited to subpycnocline depths at
the southern end of the mid-Bay region (220 km from the
Susquehanna River mouth), and that this organic matter
decays as it is transported up estuary below the pycnocline.
The steady-state solution of Streeter-Phelps equation can be
written as:

DO ¼ DOS � kdBODuðFÞ
kr � kd

e�kd xv � e�kr xv
� �� Die

�kr xv ð1Þ
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where DO = the dissolved oxygen concentration (mg L−1),
DOs = the saturation oxygen concentration (mg L−1), kd =
the BOD decay coefficient (per day), kr = reaeration
coefficient (per day), BODu = the ultimate BOD (mg L−1),
x = downstream distance from point source (kilometer), Di =
the DO deficit at the point source (mg L−1), and v = net
advection (km day−1).

For our application to the Chesapeake Bay, kr represents
DO flux across the pycnocline and BODu is approximated
by the nitrogen load times the C/N (5.67 g C per g N) and
O2/C (2.4 gO2 per g C) ratios, divided by the up-estuary
water flux, which was calculated as X-section area
(600 km2) multiply by the advection velocity (3.14 km
per day). The details can be found in Scavia et al. (2006). In
the original Streeter-Phelps formulation, v represents net
advection. However, in this application it also represents
all un-modeled process and associated uncertainties (e.g.,
movement of organic material through the upper food
web, conversions between dissolved and particulate
forms of organic carbon, sediment-water exchange
processes, benthic respiration and mineralization, burial).
F represents the combined effects of the fraction of net
surface organic matter production that settles below the
pycnocline and the extent of nitrogen recycling. This
model predicts average concentration of dissolved oxygen
below the pycnocline as a function of distance from the
point source. Predicted hypoxic volume, V (km3), is then
estimated from the predicted length L (km) of the profile
with concentrations below 2 mg L−1 and a regression
equation determined from observations: V=0.00391L2

(Scavia et al. 2006).

Nutrient-Driven Phytoplankton Model

A simple, nutrient-driven phytoplankton model, based on
previous studies on lakes and estuaries (Scavia 1980;
Jørgensen 1994; Humborg et al. 2000; Tett et al. 2003;
Fennel 2004; Painting and Devlin 2007; Swaney et al.
2008), was developed by Scavia and Liu (2009) to explore
estuarine nutrient susceptibility. It is a simple surface-layer
model with inputs and losses of biomass that allow a focus
on key biogeochemical reactions (Kimmerer et al. 1993;
Murray and Parslow 1999). Rather than model detailed
nitrogen dynamics (including phytoplankton uptake and the
many process involved in biogeochemical cycling), phyto-
plankton production is modeled as proportional to total
nitrogen (TN) load times α, similar to the SP model
application here and in earlier work for the Gulf of Mexico
and the Chesapeake Bay (Scavia et al. 2003, 2006; Scavia
and Donnelly 2007). Following Scavia and Liu (2009),
Susquehanna River nitrogen load was converted to phyto-
plankton carbon production by multiplying the load by a
factor α that encompasses the C/N ratio for nitrogen-limited

production and an “estuarine conversion efficiency factor”
intended to capture the myriad processes involved in
converting the nitrogen load to algal production. Phyto-
plankton sinking is modeled as a first-order loss rate and
zooplankton grazing is modeled as a quadratic term in
phytoplankton biomass similar to approaches for zooplank-
ton mortality (Edwards and Yool 2000; Cerco and Noel
2004; Cranford et al. 2007) under the assumption that
zooplankton grazer abundance will vary with phytoplank-
ton abundance. The rate of change of surface mixed-layer
phytoplankton carbon (B) is:

dB

dt
¼ In � QoutB

V1
� v's1B� LB2 ð2Þ

In ¼ TNL

V1
a ¼ TNR þ TNO

V1
a ¼ TNR þ Qin � NO

V1
a ð3Þ

V1 ¼ fz � V ; v's1 ¼ vs
z1

¼ vs
fz � z ; Qout ¼ V

WRT
ð4Þ

where, B is phytoplankton biomass (g C m−3); In is
phytoplankton production (g C m−3 day−1) derived from
spring nutrient load (TNL, g N per day) and the conversion
factor(α, g C per g N); Qout is the outflow to the ocean
(m3 per day); Q is the river freshwater discharge (1.13×
108 m3 per day, from NOAA NEEA dataset, http://ian.
umces.edu/neea); Qin is ocean inflow (Qout-Q, m

3 per day);
WRT is the salinity-based residence time (231 days, from
NOAA NEEA dataset); v's1 is the sinking rate (per day); vs
is the sinking velocity (meter per day); z1 is the mixed layer
depth (m); z is the estuary average depth (m); fz is the ratio
of surface layer depth to the total depth (0.43, based on
monitoring data analysis); L is the rate of loss to grazing by
zooplankton (m3 g C−1 per day); TNL is the sum of TNR

( spring riverine TN load, g N per day) and TN0 (ocean
nitrogen influx, g N per day); N0 is the ocean nitrogen
concentration (0.016 mg L−1, from NOAA NEEA dataset);
V1 is the mixed layer volume (m3); and V is the estuary
volume (m3).

To explore the model’s ability to reproduce summer
conditions, we solved Eq. 2 analytically at steady state
assuming this provides analytical power and adequate
distinctions among years (Armstrong 1994; Fennel and
Boss 2003). The steady state solution for surface-layer
phytoplankton carbon (B) is:

B ¼
� Qout þ V1v's1ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qout þ V1v's1ð Þ2 þ 4InLV1

2
q
2LV1

ð5Þ
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Parameter Estimation

In Bayesian analysis, all unknown parameters are treated as
random variables and their distributions are derived from
known information (Borsuk et al. 2001), thus providing a
rigorous method for uncertainty analysis and presenting key
information for analysis and management decision making
(Reckhow 1994). Bayesian inference is based on Bayes’
Theorem (Gill 2002):

p q yjð Þ ¼ p qð Þp y qjð Þ
pðyÞ ¼ p qð Þp y qjð ÞR p qð Þp y qjð Þdq

q

/ p qð Þp y qjð Þ ð6Þ

where p(θ|y) is the posterior probability of θ, which is the
conditional distribution of the parameters after observation
of the data; θ is the parameter to be estimated; p(θ) is the
prior probability of θ (i.e., its assumed probability distribu-
tion before observation of data); p(y|θ) is the likelihood
function, which represents the probability of the occurrence
of the observations y given different realizations of the
postulated mechanistic relationship between the response
and predictor variables (e.g., Eq. 1).

Practical implementation of Bayesian approach had been
limited because most non-linear models have mathematical
forms that are analytically intractable when incorporated
into Bayes theorem; it is impossible to obtain the
analytically summarizing posterior distributions; and exten-
sive computer time was needed to obtain numerical
estimation (Stow and Scavia 2008). More recently, howev-
er, the Markov Chain Monte Carlo (MCMC) algorithm has
been applied to obtain the numerical summarization of
parameters (Qian et al. 2003). In MCMC algorithms, the
posterior distribution is determined after the user-provided
start values for targeted parameters and a sufficient “burn
in” period for the model to converge. Then the converged
model can effectively provide a representative, proportion-
al, random sample from the posterior distribution. There are
three steps in the Bayesian approach using MCMC
sampling (Malve and Qian 2006): identifying the prior
probability distributions, determining the likelihood func-
tion, and MCMC sampling. After sufficient “burn-in”,
results are saved for the statistical inferences (Malve and
Qian 2006).

We implemented MCMC with Gibbs sampling with
WinBUGS (version 1.4.3; Lunn et al. 2000), called from R
(version 2.6.0; R2WinBUGS (version 2.1-8; Gelman and
Hill 2007). The MCMC sampling was carried out using
four chains, each with 20,000 iterations (first 10,000
discarded after model convergence); and samples for each
unknown quantity was taken from the next 10,000
iterations using a thin (MCMC sampling interval) equal to
40 to reduce serial correlation. Statistical inference was
based on the resulting 1,000 MCMC samples. A potential
scale reduction factor, Rhat, was produced in R2WinBUGS
to determine model convergence (at convergence, Rhat=
1.0). Rhat is approximately the square root of the variance
of the mixture of all the chains divided by the average
within-chain variance; if it is greater than 1.0, the chains
have not mixed well (Gelman and Hill 2007). Standard
error and the coefficient of determination (R2) between
observed and predicted values were used to test model
results: (Gelman and Hill 2007).

Bayesian Framework the SP model For the SP model,
transferring Eq. 1 into Bayes’ theorem, the error term was
assumed to be normally distributed with zero mean and
variance. The likelihood function for hypoxic volume, with
the error term assumed to be normally distributed with zero
mean and variance of σV

2 is:

Y36
i¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

V

p exp
VO
i � 0:00391Li2

� �2
�2sV

2

" #
ð7Þ

where i means the years; Vi
0 is the observed hypoxic

volume for year i.

Bayesian Framework the phytoplankton model For the
phytoplankton model, we have the following results:

Chlam
i
¼ 1; 000

g
�
�ðQout þ V1v's1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQout þ V1v's1Þ2 þ 4IniLV1

2
q
2LV1

þ eC

ð8Þ
where γ is the C/Chl a ratio, and eC is the model error,
assumed to be normally distributed with zero mean and
variance of σC

2. The likelihood function can be described as:

Y36
i¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

C

p exp

Chla0i � 1;000
g �

� QoutþV1v's1ð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QoutþV1v's1ð Þ2þ4IniLV1

2

q
2LV1

0
@

1
A

2

�2s2
C

2
66666664

3
77777775

ð9Þ

where Chla0i is the observed Chl a value (µg L−1).
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Parameters estimation of SP Model There are five param-
eters in the SP model—Di, v, K, kd, and F. Di represent
upstream deficits, so we assumed annual Di follow normal
distributions with means equal to observations with small
error based on the observations. We estimated constant
values for v, K and kd across all years, and individual
values of F for each year to enable comparisons with α
from the phytoplankton model. F was allowed to vary
across years using a hierarchical structure such that F is
normally distributed with mean 0.75, standard deviation
0.13, and restricted between 0 and 1 (e.g., N(0.75,0.13)I
[0,1]), based on the assumption that the year-specific
estimates arise from a common normal distribution
(Stow and Scavia 2008). The following informative normal
priors were used based our previous studies (Liu et al. in
review): K∼N(0.60,0.20)I[0,1]; kd∼N(0.11,0.05)I[0,]; and
v∼N(2.5, 0.77)I[0,], where ‘I(∼)’ denotes censoring to either
eliminate negative values (I[0,]) or to restrict values between
0 and 1 (I[0,1]).

Parameters estimation of Phytoplankton Model There are
four parameters in the phytoplankton model—α, L, γ, and
vs. We estimated constant values for L, γ, and vs across all
years, and individual values of α for each year to enable
further exploration of the internal nutrient processes in the
Bay and comparisons with F estimates in SP model.

Results

SP Model Allowing F to vary among years, while
estimating fixed values for v, K, kd, resulted in very good
fit to hypoxic volume measurements (Fig. 1a; R2=0.99).
The corresponding R2 for the measured vs. predicted
oxygen concentration profiles is 0.80. Table 1 provides
the posterior distributions of parameters, including the
mean, sample standard deviation (SD), and five credible
intervals (CI), as well as the values used in the more
traditional calibration approach (Scavia et al. 2006). Our
estimate for kd is larger and K is smaller than those used
by Scavia et al. (2006), but their 95% probability ranges
include both values. The parameter v in Scavia et al.
(2006) was varied yearly while here we estimated it as
constant. The parameter F (Fig. 1b), representing the extent
to which the TN load can produce oxygen-consuming
bottom-water organic material, decreased between 1950
and 1980 and increased after 1980, consistent with the
timing of the reported regime shift (Hagy et al. 2004,
Kemp et al. 2005).

Phytoplankton Model Allowing α to vary among years,
while estimating fixed values for L, γ, and vs resulted good
fit to Chl a measurements (R2=0.96; σ=0.47) (Fig. 2). The

posterior distributions of parameters are in Table 2. Our
parameter estimates are consistent with typical literature
values and with those determined for the Chesapeake Bay.
For example, Cerco and Noel (2004) estimated L to be in
the range of 0.10 to 2.0 for the Chesapeake Bay compared
with our estimated mean (95% probability range) of 0.35
(0.20–0.59). Chesapeake Bay summer minimum C/Chl
ratio (γ) is 30, with the maximum ranging between
150∼200 and overall mean between 50 and 100 (Cerco
and Noel 2004). Our estimated γ value is 81.8. Phyto-
plankton sinking rates generally range between 0.1 and
2.0 m per day (Chapra 1997) and Cerco and Noel (2004)
found 0.10 m per day worked best in their Chesapeake Bay
model. Our estimate was 0.49 m/day.

The parameters in the above paragraph were estimated as
constants across all years; whereas we allowed the
conversion factor, α, to vary for each year. That factor is
composed of two terms: the C/N ratio for production and
the estuarine efficiency factor (ε; Scavia and Liu 2009). By
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Fig. 1 (a top) Modeled hypoxic volume (open circles) and observa-
tions (closed circles); (b bottom) estimated F values (closed circles for
those before 1980s and open circles for those after 1980s). Error bars
represent the 95% CI of the estimates
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factoring out a constant C/N ratio of 5.67 g C per g N, ε
varies between 2 and 20 with trends consistent with the
reported regime shift around 1980 (Fig. 3). However, while
as with F, it increased after 1980, it was rather constant
before 1980. In an earlier cross-system application of this
phytoplankton model for 75 estuaries, Scavia and Liu
(2009) demonstrated that estuaries with river inflow divided
by volume (Q/V) between 0.3 and 2.0 year−1 had ε values
between 1.0 and 3.0 and were moderately susceptible to
nutrient loads. Estuaries with Q/V greater than two were
highly susceptible to nutrient loading. The ratio of river
discharge to bay volume for the Chesapeake Bay is
0.75 year−1, and using the same C/N ratio as in Scavia
and Liu (2009), the estimated ε was 2.9±1.5, consistent
with the transition from a moderate to highly susceptible
system. Before discussing these trends in detail we compare
model and observed process rates.

Modeled Rate Processes Before using models for either
prediction or diagnosis, it is important to ensure the internal
processes, in addition to the state variables, are consistent
with observations, because it is possible to match state
variables but have internal processes incorrect and com-
pensating. This is particularly true for non-linear models.
Estimates of summer primary production from the phyto-
plankton model ranged between 0.22 and 3.62 g C m−2 per
day, with a mean value of 1.22±0.84 g C m−2 per day
(mean value±one standard deviation), comparing favorably

to observations in the Chesapeake Bay (1.38±1.07 g C m−2

per day, Cerco and Noel 2004; 1.85 g C m−2 per day, Kemp
et al. 1992).

Grazing and sedimentation losses in the phytoplankton
model, expressed as a percent of total primary production,
were 61.6±10.1% and 36.6±8.9%, respectively. McManus
and Ederington-Cantrell (1992) reported that micro-
zooplankton grazing consumed about 50–60% of the
phytoplankton production in the Bay. Our results also
suggest that grazing was more important than sedimentation
in controlling phytoplankton biomass, similar to conclu-
sions drawn by Malone (1992) and Cerco and Noel (2004)
for the Chesapeake Bay.

Observed spring (March–April) sedimentation in the
Chesapeake Bay has been reported to be 0.70 g C m−2 per
day (Boynton et al. 1993) and 0.50 g C m−2 per day (Hagy
et al. 2005). Our summer estimates from the phytoplankton
model are in the range but, as expected for summer vs.
spring, somewhat lower (0.39±0.16 g C m−2 per day). Our
estimates of F in SP model range between 0.32 and 0.91,
with mean of 0.67. These values are a bit lower than the
0.80–1.2 summarized from the literature and the 0.85 used
in earlier models (Scavia et al. 2006).

Bottom layer respiration from the SP model is
0.093 g O2 m−3 per day (95% probability interval: 0.048–
0.156). An independent estimate of bottom-layer oxygen
consumption based on mass-balances yielded 0.12±0.06,
0.20±0.08, and 0.42±0.15 mg O2 L−1 per day for the
upper, middle, and lower reaches of the mid-Bay region
(Hagy et al. 2004; Scavia et al. 2006). Kemp et al. (1997)
reported sediment and lower water column oxygen con-
sumption rates (including sulfate reduction expressed in
O2 equivalents) for the mid-Bay region in 1990–1992.
Combining the reported bottom water plankton respiration
rates (Kemp et al.’s Fig. 4b) with sediment O2 consumption
rates converted to volumetric rates, assuming an average
6.5-m sub-pycnocline depth, we calculate a total metabolic
rate between 0.08 and 0.5 g O2 m

−3 per day.
Average cross-pycnocline flux in the mid-Bay region

from the SP model was 0.14 g m−3 per day (95% probability
interval: 0.12–0.16). These are consistent with independent
flux estimates based on mass-balances: 0.10±0.02, 0.10±
0.02, and 0.09±0.02 mg O2 L−1 per day for the upper,
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Fig. 2 Nutrient-driven phytoplankton model results. Model estimates
(open circles) with estimated 95% CI; observations in closed circles

Table 1 The Bayesian estimated parameters values in SP model

Parameters Mean SD 2.50% 25% 50% 75% 97.50% Scavia et al. (2006)

kd 0.16 0.04 0.09 0.13 0.16 0.19 0.24 0.09

v 2.11 0.69 1.06 1.59 2.10 2.57 3.59 Varied by year, with mean 2.4 and SD 0.8

K 0.35 0.12 0.17 0.26 0.34 0.45 0.61 0.60

σV 0.422 0.462 0.048 0.101 0.220 0.577 1.708 –
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middle, and lower reaches of the mid-Bay region (Hagy et
al. 2004; Scavia et al. 2006).

Discussion

In earlier studies, Boesch et al. (2001), Hagy et al. (2004),
Kemp et al. (2005), and Kemp and Goldman (2008) dis-
cussed a threshold change in the Chesapeake Bay hypoxia
in the 1980s, when the Bay became more susceptible to
nutrient loads. This is seen in both the plot of observed and
modeled surface Chl a versus TN load (Fig. 4) and hypoxic
volume versus TN load (Fig. 6).

Comparisons of F and ε The parameter F in the SP model
and the efficiency factor ε in the phytoplankton model
share similar constructs relating nutrient loads to plankton
production. F parameterizes the relationship between
nutrient load and phytoplankton production (a form of
recycling efficiency) and the fraction of that production that
settles into the bottom layer; whereas ε represents only the
efficiency with which nutrient load is converted to surface
production. While estimates of both parameters appear to
have inflection points around 1980, F decreases signifi-

cantly before increasing, whereas ε is rather constant before
increasing around 1980 (Figs. 1b and 3). A possible
explanation for why F decreased but ε did not, is that
during the earlier period, increased surface production was
actually moving down estuary past the boundary of the SP
model and outside of the mesohaline region that influences
hypoxia. This is consistent with conclusions made by
Harding and Perry (1997) who showed Chl a concentra-
tions in the mesohaline portion of the Bay (inside the
boundary of our model) remaining relatively constant after
the 1950s, while concentrations in the polyhaline region
(outside the boundary of the model) increased, presumably
in response to increasing loads (see Figs. 1 and 2 of
Harding and Perry 1997). Thus, to compensate for that
change, the Bayesian estimator provided decreasing values
of F (Fig. 1b). The rather constant conversion efficiency (ε)
from the phytoplankton model suggests that it was only this
translocation of surface production, not a regime shift that
produced the decrease in percent of surface production
influencing hypoxia (F).
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Fig. 4 Chl a vs. TN load. Solid lines represent the results using
phytoplankton model with ε values averaged for the period before
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Parameters Mean SD 2.50% 25% 50% 75% 97.50%

Sinking rate of phytoplankton (vs, m per day)

vs 0.485 0.067 0.361 0.441 0.481 0.530 0.619

Loss rate to grazing (L, m3 g C−1 per day)

L 0.353 0.102 0.201 0.276 0.342 0.417 0.590

Carbon: Chl a ratio (γ)

γ 81.8 11.5 60.7 73.1 80.7 91.0 102.8

Model standard error (σC)

σC 0.47 0.29 0.03 0.20 0.47 0.71 0.96

Table 2 The Bayesian estimat-
ed parameters values in phyto-
plankton model
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Estuarine efficiency, Nitrogen recycling, and Bottom-water
oxygen In contrast to the earlier period, both ε and F
increase after 1980, suggesting the conversion efficiency
has been increasing since then. Under reducing conditions,
nitrification and thus denitrification is reduced such that
NH4 and NO3 are recycled and made ultimately available
for increased algal production (Diaz and Rosenberg 2008).
Kemp et al. (2005) showed in the Chesapeake Bay that the
fraction of NH4 recycled from sediments is inversely
related to bottom DO concentrations. Our estimates of
recycling ε are consistent with that observation (Fig. 5a).
We also find a similar, albeit opposite and less strong
relationship between F and hypoxic volume after 1980
(Fig. 5b). Decreasing average DO concentrations would be
consistent with increasing hypoxic volumes. Consistent
with our earlier discussion, there is no direct relationship
between hypoxic volume and F before 1980. These result
show continuous increases in efficiency with decreasing
subpycnocline oxygen concentrations (Fig. 5), suggesting a
gradual transition to higher efficiency as opposed to an
abrupt regime shift.

Forecasts and policy implication A version of the SP
model has been used previously to evaluate the impacts of
nutrient load scenarios in the Chesapeake Bay (Scavia et al.
2006). In that application, the model was calibrated to the
full data set, irrespective of a regime shift. Here we exposed
variations in parameters of the SP and phytoplankton
models that are consistent with two important processes
controlling the relationship between nutrient load and
hypoxia development. The first process appears to be the
extent to which surface production has an opportunity to
develop and settle below the pycnocline before it moves
down-estuary and outside the region physically susceptible
to hypoxia formation. This feature was captured in
decreasing values of F prior to 1980 in the SP model,
consistent with findings reported in Harding and Perry
(1997). The second process is the apparent increase in the
ability of the estuary to recycling nitrogen and become
more efficient in its conversion to algal biomass and
hypoxia development. This positive feed-back between
development of low oxygen conditions and increased
recycle was captured by increases in both F in the SP
model and ε in the phytoplankton model after 1980,
consistent with Kemp et al (2005).

The phytoplankton model was useful for simulating
surface chlorophyll, and for exploring the basis for
increased hypoxia susceptibility after 1980. However,
because the primary property of policy interest is the extent
of hypoxic volume, we revise our previously published
SP scenarios with new prior information available from
this analysis. We again assumed v, K, and kd were
invariant across time, but allowed F and Di to take on

different but constant mean values before and after 1980,
as opposed to different values for each year. This allows us
to develop scenarios for future nutrient loads under
assumptions that the Bay remains at this heightened
susceptibility or that reduced loads eventually returns the
Bay’s internal processes to those prior to the shift. We
used pre- and post-1980s means for Di and assumed
F comes from a normal distribution with mean posterior
distributions from Eq. 1 for years prior to and after
the 1980s.

Recall that our models are driven by the Susquehanna
River load, not total load for the Bay. In our earlier work,
we suggested that a 35% reduction of total nitrogen load
from the 1980–1990 Susquehanna River average
(262,881 kg/day) would return the main-stem hypoxic
volume to the levels observed in the 1950s–1970s
(Scavia et al. 2006). Our current results (Fig. 6) indicated
that, if the physical and biogeochemical processes of the
period before the regime shift were controlling, that
reduction would result in hypoxic volume averaging
2.7 km3 in a typical year, below the average 4.2 km3

hypoxic volume of 1950s–1970s. However, if the new
conditions persist and the Bay remains more susceptible
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636 Estuaries and Coasts (2010) 33:629–639



to nutrient loads, the 35% reduction would result in
hypoxic volume averaging 6.0 km3, higher than the
target years.

In the Chesapeake Bay Program nutrient load setting
process (Koroncai et al. 2003) load reduction level Option 2
was highlighted based on results from models with much
more detailed ecological and spatial resolution (Cerco
1995a, b, Linker et al. 2002). This option was projected
to reduce the area of bottom water with dissolved oxygen
concentrations below 1 mg/L to less than 4% and the
volume of water not reaching that attainment goal to less
that 7%. These criteria are somewhat different from those
used in the present study, but we can compare this scenario
with our results. Option 2 includes a total nitrogen load
from the Susquehanna River of 75.9 million pounds per
year. Approximately 62% of the annual load from the
Susquehanna comes in Jan–May, corresponding to
137,115 kg/day, or a 48% reduction from the 1980–1990
average. With this Jan–May load, our model suggests that
hypoxic volume (concentrations less than 2 mg/L) would
reach 4.3 km3 under the new regime or 0.4 km3 under the
previous regime. Direct comparisons between our scenarios
and those of the more detailed model are complicated by

the fact that theirs was based on 1 mg/L and ours are based
on 2 mg/L; however, our projections with a pre-1980
calibration are consistent with those made with the detailed
models—virtual elimination of hypoxia. However, our
projections using the post-1980 calibration suggest further
reductions may be needed to reach Bay goals. It is also
worth noting that both measures of efficiency, F and ε,
show increasing trends after 1980 (Figs. 1 and 3), and if
those trends continue, even further nutrient reductions may
be necessary unless action is taken soon. As have been
discussed elsewhere (e.g., Scheffer and Carpenter 2003,
Kemp and Goldman 2008), hysteresis effects may prevent a
return to pre-shift conditions from following a smooth path
back through time. Nutrient reductions below those of the
past may be required to reset the stage.
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