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ABSTRACT: Stratification and nutrient loading are two primary factors leading
to hypoxia in coastal systems. However, where these factors are temporally
correlated, it can be difficult to isolate and quantify their individual impacts. This
study provides a novel solution to this problem by determining the effect of
stratification based on its spatial relationship with bottom-water dissolved oxygen
(BWDO) concentration using a geostatistical regression. Ten years (1998−2007)
of midsummer Gulf of Mexico BWDO measurements are modeled using
stratification metrics along with trends based on spatial coordinates and
bathymetry, which together explain 27−61% of the spatial variability in BWDO
for individual years. Because stratification effects explain only a portion of the year-
to-year variability in mean BWDO; the remaining variability is explained by other
factors, with May nitrate plus nitrite river concentration the most important.
Overall, 82% of the year-to-year variability in mean BWDO is explained. The results suggest that while both stratification and
nutrients play important roles in determining the annual extent of midsummer hypoxia, reducing nutrient inputs alone will
substantially reduce the average extent.

1. INTRODUCTION
The regular, seasonal occurrence of bottom-water hypoxia in
the northern Gulf of Mexico has been well documented over
the last 25 years.1 Hypoxic extent, defined operationally as the
area where bottom-water dissolved oxygen (BWDO) concen-
trations are below 2 mg L−1, has been determined primarily
through midsummer monitoring cruises conducted regularly
since 1985. These cruises demonstrate that the areal extent of
hypoxia has increased over time, corresponding with a period of
elevated nutrient loading from the Mississippi River basin.1

This observation, along with other evidence of increasing
hypoxia,1,2 has motivated development of nutrient reductions
strategies for the basin.3,4

The relationship between nutrient loads and the interannual
(i.e., year-to-year) variability of the midsummer hypoxic area
has been explored through a range of computational models.
Scavia et al.5 use a one-dimensional, simple mechanistic model
that explains 45% of the interannual variability as a function of
the May−June nitrogen load. These results are generally
consistent with the statistical regressions of Bianchi et al.6 who
find that the May−June nitrogen load explains 47% of the
variability, and of Greene et al.7 who find that the May nitrate
plus nitrite (NO) load explains 42% of this variability. In
addition, studies by Turner et al.8,9 and others7,10 have shown
that model performance is improved by also accounting for the
long-term cumulative effects of nutrient loading.
It is widely understood, however, that water column

stratification also affects the temporal variability of hypoxia.

Stratification, which inhibits the reoxygenation of bottom
waters, can be particularly strong in the northern Gulf due to
warmer surface waters significantly freshened by discharges
from the Mississippi and Atchafalaya Rivers overlying denser
waters derived from the deep shelf. Wiseman et al.,11 while
acknowledging the importance of nutrient loading, determined
that the majority of the interannual variability in the hypoxic
area (for a nine-year period) could be explained using the mean
river flow from the preceding eleven months. Using a more
expansive data set, Bianchi et al.6 demonstrate that 41% of the
interannual variability in hypoxic area can be explained in terms
of the May−June river flow.
The fact that both nutrients and flow can explain a large

portion of the variability in hypoxic extent is not surprising.
Bianchi et al.6 report that these variables are highly correlated,
with May−June flow accounting for 95% of the variability in
May−June nitrogen load. Therefore, use of either of these
variables masks the mechanistic effect of the other, leaving
room for debate regarding whether eutrophication (via nutrient
loading) or stratification (via freshwater flow) is the primary
control on the interannual variability of hypoxia. Accordingly,
Hetland and DiMarco12 suggest that it will be necessary to
separate the physical and biological causes of hypoxia to
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develop models with greater predictive capability; and a recent
scientific assessment2 stresses the need to include physical
factors within hypoxia models. Moreover, a recent study by
Murphy et al.13 demonstrates the importance of both nutrients
and stratification for predicting hypoxia in the Chesapeake Bay.
This need likely extends to other systems, as Diaz and
Rosenberg14 report that there are over 400 coastal hypoxic
zones around the world, and that they are controlled by both
biological and physical factors (generally eutrophication and
stratification, respectively). Because stratification is primarily a
natural phenomenon, while nutrient loading is often an
anthropogenic watershed pollution issue, the ability to
distinguish between these factors is critical for managing
these complex systems.
In this study, we determine the effect of stratification on the

variability of hypoxia through a geostatistical regression
(GR)15,16 for BWDO. In the model, stratification is represented
by metrics derived from salinity and temperature profiles, with
regression coefficients determined based on how stratification
explains the spatial variability in BWDO. While a portion of the
interannual variability in BWDO is also explained by the
stratification effect, the remaining portion must be explained by
other factors, such as Mississippi River nutrient inputs. We
evaluate the efficacy of this methodology using 10 recent years
of midsummer cruise data (1998−2007). As such, this study
generally focuses on the interannual variability of the system
within its current state; and it does not focus on long-term
trends in the system.

2. MATERIALS AND METHODS
2.1. Data Description. We use data from midsummer

hypoxia monitoring cruises conducted between 1998 and 2007
along the Louisiana-Texas shelf. These cruises are performed by
the Louisiana Universities Marine Consortium (LUMCON),
and the data were retrieved from the National Ocean Data
Center.17 To help ensure a consistent spatial envelope for this
study, only locations sampled during at least 9 of the 10 years
were included in the analysis (Figure 1), resulting in 61−64

monitoring locations for each year. Sampling locations were
geo-referenced using the UTM Zone15 projection, and water
depths were determined from a 3-arc-second digital elevation
model (DEM) obtained from NOAA.18 We use the dissolved
oxygen, salinity, and temperature profile data collected at these
locations. Typically, data were collected by two different

instruments at each monitoring site: a Hydrolab and a Sea-Bird
profiler.19 Based on a comparison with the DEM, the Hydrolab
and Sea-Bird typically reached to within zero and one meters of
the sea floor, respectively, with minor variability. For this study,
the BWDO values were taken from whichever instrument
reached the greatest recorded depth (typically the Hydrolab).
To determine salinity and temperature profiles, Sea-Bird data,
which have better vertical resolution, were chosen preferentially
over Hydrolab data; and when the Hydrolab reached a greater
depth, we appended these additional measurements to the Sea-
Bird profile.
The stratification intensity at each sampling location was

quantified using metrics derived from the salinity and
temperature profiles. Because sampling intervals in the raw
profile data were not uniform, the profiles were first resampled
by linear interpolation to 0.2 m resolution. The difference (ΔS)
between the 25th and 100th percentiles of salinity (Slo and Shi,
respectively) was calculated for each location, and then the
maximum salinity gradient (Sg) over a 0.4 m vertical interval,
within the region of ΔS, was determined. The thickness (m) of
the subhalocline (Hs), defined as the region below Sg, was also
calculated. Figure S1 (Supporting Information (SI)) provides
an illustration of these metrics. Use of the 25th and 100th
percentiles for defining Slo and Shi was not arbitrary; a range of
percentile values was considered, and the values that optimized
the GR (based on BIC score, described subsequently in Section
2.4) were selected. For temperature profiles, an identical
analysis was performed, and the zeroth and 75th percentiles
were found to be optimal for defining Tlo, Thi, and ΔT. The
maximum temperature gradient and subthermocline thickness,
Tg and Ht, respectively, were also calculated. Because
temperature tends to decrease with depth, while salinity
increases, the 25th percentile of salinity and the 75th percentile
of temperature both generally correspond to the 25th
percentile of depth, suggesting that near-surface stratification
conditions are less important for predicting BWDO.
The Mississippi and Atchafalaya River outfalls (Figure 1)

provide the vast majority of fresh water and nutrients to the
shelf. The Atchafalaya River is important because approximately
30% of the Mississippi River flow (and load) enters the
Atchafalaya River near Simmesport, Louisiana.5 Monthly flow
and loading data were retrieved from USGS,20 and we used the
sum of the two river inputs. The USGS uses both an adjusted
maximum likelihood estimator (AMLE) and a composite
(COMP) method to estimate loads.7 We used AMLE data
because they generally performed better in the modeling
analyses. However, the two data sets are highly correlated, and
the choice does not greatly affect the results.

2.2. Geostatistical Model Formulation. Our geostat-
istical modeling approach takes into account the spatial
correlation of the dependent variable (i.e., BWDO), which
improves estimates of the model parameters relative to a
regression based on the assumption of independent and
identically distributed residuals, and allows for a more realistic
assessment of model uncertainty.16 The effectiveness of GR
methods for modeling environmental phenomena has been
demonstrated in studies of rainfall,21 snow depth,22 water
quality,23 and biospheric CO2 exchange.

15 With the exception
of the last example, these works focused primarily on spatial
interpolation, and less on inference of causal factors. As such,
our work adds to the limited number of studies demonstrating
how geostatistical modeling can be useful for confirming and
quantifying causal relationships within environmental systems.

Figure 1. Map of shelf bathymetry and monitoring sites used in study.
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In the GR model, the dependent variable, z, is expressed as a
combination of deterministic and stochastic components.16 The
deterministic component, Xβ, is the portion of z that can be
expressed as a function of predictor variables and annual
constants (i.e., intercepts). The stochastic component is the
portion of z not accounted for by the deterministic component,
and which can include both spatially correlated and
uncorrelated parts, η and ε, respectively. Overall, the GR is
represented as

β η ε= + +z X (1)

where z is an n × 1 vector of BWDO measurements taken at
different locations and times. The k × 1 vector β includes the
parameters of the deterministic component, which can be
divided into annual intercepts (βa) and regression coefficients
(βp) (eq 2). Correspondingly, the n × k matrix X includes the
annual classifiers (Xa) and predictor variables (Xp) for each
observation. The annual classifiers are binary values that bin
samples by year. Each predictor variable is normalized to a
mean of zero and variance of one over the 10 year period.

β
β

β
=
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As discussed in the Introduction, a portion of the interannual
variability in mean BWDO is accounted for through
stratification metrics (which are included as predictor
variables). The regression coefficients for these metrics are fit
to the spatial variability in BWDO, based on the assumption
that sites which are strongly stratified will have lower BWDO
due to lower rates of reoxygenation. They are not fit to the
interannual variability in BWDO because this could confound
the role of stratification with nutrient loading, as they are
temporally related, both being dependent on river flow. This
approach does not, however, preclude the stratification metrics
from explaining a portion of the interannual variability. As the
average intensity of stratification varies from year to year, the
predicted impact of stratification on BWDO varies proportion-
ally, as a function of the regression coefficients. This is
reasonable because years of intense stratification would be
expected to have less reoxygenation and thus lower BWDO.
The remaining interannual variability is accounted for primarily
through the annual intercepts, which will be discussed further in
Section 2.6.
The stochastic component, η + ε, was found to be well

represented by the commonly used exponential covariance
model with a nugget effect,16 as follows:
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where the covariance (Q) between two observations (zi and zj)
is modeled as a function of the distance between the
observation locations (hi,j) and the covariance model
parameters σε

2, ση
2, and r. Here, r is a range parameter, and

3r is the effective range of spatial correlation. The parameter σε
2

represents the variance of the portion of the residuals that is not
spatially correlated (microvariability and measurement error),
and ση

2 represents the variance of the portion that is spatially
correlated. Spatial correlations are expected to be stronger in
the east−west direction than in the north−south direction due

to along-shore currents.24 To account for this phenomenon, hi,j
is scaled by an anisotropy ratio, α, which is the ratio of east−
west to north−south correlation ranges.

2.3. Geostatistical Parameter Estimation. We use
restricted maximum likelihood (REML)25 to estimate the
covariance model parameters and the anisotropy ratio. This
method is recommended for models with strong spatial
correlation and/or a large numbers of predictor variables,26

and it has been applied in previous geostatistical studies.15,27

The parameters are optimized by minimizing Lr (eq 4) with
respect to σε

2, ση
2, r and α, which define Q (an n × n covariance

matrix with elements determined from eq 3). Because the
covariance between the stochastic components of the
observations collected in different years is assumed to be
zero, Q becomes block diagonal. I is the identity matrix.

= +
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Once Q is optimized, the deterministic model parameters are
calculated in a straightforward manner:

β ̂ = − − −X Q X X Q z( )T T1 1 1 (5)

Thus, a complete set of model parameters is uniquely defined.
2.4. Geostatistical Variable Selection. The GR can be

formulated for any subset of the available predictor variables.
Candidate variables include the salinity stratification metrics
(ln[ΔS], Shi, Sg, and Hs) and temperature stratification metrics
(ln[ΔT], Tlo, Tg, and Ht). Note that Slo and Thi were omitted to
avoid issues of colinearity; and the salinity and temperature
differences were log-transformed to account for an apparent
nonlinearity in their relationships with BWDO. Variables for
water column depth, UTM easting, and UTM northing (D, E,
N) were also included, along with their squares (D2, E2, N2) to
allow for potential spatial and bathymetric trends. Overall, there
are fourteen candidate predictor variables, yielding over 16 000
combinations of 1−14 variables to be considered. The
challenge is to determine an optimal combination of predictor
variables that best describes the phenomenon of interest,
without resulting in overparameterization of the model.15 In
general, this is achieved by including only those variables that
have a sufficiently high degree of explanatory ability, as defined
by a statistical criterion. In this study, we used the Bayesian
information criterion (BIC),28 where models with different sets
of predictor variables (Xs) are compared based on their BIC
scores, which quantify the explanatory power of a model
relative to its complexity, with the lowest score indicating the
model with optimal balance. Assuming the residuals follow a
normal distribution, the BIC score is calculated as follows:15

= + −

+

− − − −

k n

Q z Q I X X Q X X Q zBIC ln(det[ ]) ( ( ) )
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s

T
s s

T
s s

T

s
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(6)

The GR model should be optimized in terms of both its
covariance parameters (Section 2.3) and its selection of
predictor variables. Because the covariance parameters of the
stochastic component depend on the selected predictor
variables and vice versa, an iterative approach was used.

2.5. Annual Mean Values. The interannual variability of
midsummer hypoxic intensity can be assessed by comparing the
mean BWDO concentrations between years. Annual mean
BWDO values were determined using geostatistical kriging of
the mean,29 which assigns lower weights to observations from
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clustered sampling locations. The mean BWDO for year i is
calculated as

λ= zBWDOi i
T

i (7)

with weights, λi, corresponding to observations, zi. The weights
are determined from the system of linear equations presented
in eq 8, where Q i is the ni × ni covariance matrix for the
observations from year i, with elements determined from eq 3.
The scalar, νi , is a Lagrange multiplier, its square root being the
standard error of the estimated mean value.
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The annual mean impacts of the predictor variables (on
BWDO) are also determined geostatistically. For a given year i,
the mean impact of each predictor variable is calculated by
applying the vector of location-specific weights, λi, to the vector
of location-specific impacts, xi,j βj, where j refers to the jth
predictor variable.
2.6. Model for the Annual Intercepts. Linear regression

models were developed to explore potential relationships
between the annual intercepts and nutrient and flow data. The
response variable is the set of 10 annual intercepts, β̂a,
determined from the GR. Candidate predictor variables include
the April, May, and June monthly loads and concentrations for
NO, total Kjeldahl nitrogen (TKN), and total phosphorus, as
well as monthly flows. These concentrations are flow-weighted
averages, calculated by dividing monthly load by monthly flow.
To account for potential changes in the system’s susceptibility
to hypoxia, a linear trend across years is also included as a
candidate variable.
Because of the large number of candidate variables (p = 22),

many of which are correlated, and relatively small sample size
(n = 10), the “elastic-net” method30 was used to identify
important predictor variables. This method constrains the
magnitude of the model parameters (and shrinks some
parameters to zero, thereby eliminating them) to prevent
problems commonly associated with the overfitting of
models.31 The elastic-net method was implemented using the
“glmnet” package for the R statistical computing program.32

The degree to which model parameters are constrained is
determined through a 10-fold cross validation routine included
in this package. We used the elastic-net as an exploratory tool
and to select one or more primary variables from which to
create a more parsimonious regression model.
2.7. Hypoxic Area Model and Nutrient Reduction

Scenarios. The information developed above can be used to
predict how the intensity of midsummer hypoxia will respond
(within the system’s current state) to changes in nutrient
loading. However, while this study focuses on BWDO
concentration, policy goals have centered on the areal extent
of hypoxia.3,4 Thus, we develop a regression model for
midsummer hypoxic area (as determined by LUMCON1,33)
using the annual mean stratification effects (Section 2.5) and
one or more nutrient variables (Section 2.6). Using this model,
we can explore the effect of hypothetical nutrient reduction
scenarios over the 10 year study period.
The goal of the Intergovernmental Task Force Action Plan3,4

is to reduce the five-year running average of hypoxic area to less
than 5000 km2. Thus, we develop modeling results for all
possible consecutive five-year periods across the 10 year study

period. The consecutive five-year period which requires the
greatest nutrient reduction to achieve the Action Plan goal is
defined as the “critical” period.
Because of the non-negativity constraint on hypoxic area

(any predictions of negative hypoxic area are treated as zero),
probabilistic results are best determined through Monte Carlo
simulation (eq 9).34 Here, ys̃im is a 5 × 1 vector of simulated
hypoxic areas for a given five-year period, y ̃ is the predicted
(i.e., mean) response, u is a vector of independent samples
from a standard normal distribution, and C(Σ̃) is the upper-
triangular matrix obtained by Cholesky decomposition of the
covariance matrix for the predictions (eq 10). In eq 10,W is the
matrix of predictor variables used to develop the regression
(corresponding to the observed conditions), W̃ is a matrix of
predictors with reduced nutrient levels, σr

2 is the variance of the
model residuals, and I is the identity matrix.

Σ̃ = ̃ + ̃y y C u( )T
sim (9)

σΣ̃ = ̃ ̃ +−W W W W I[ ( ) ]T T
r

1 2
(10)

For each nutrient reduction scenario, 10 000 simulations of
ys̃im were generated in accordance with eq 9, using different
random draws of the vector u. Any simulations of negative
hypoxic area were replaced with a value of zero, and the mean
of each ys̃im was then determined, resulting in 10 000
simulations of five-year average hypoxic area. Summary
statistics for each nutrient reduction scenario were then
calculated based on this ensemble of results.

3. RESULTS AND DISCUSSION
3.1. Deterministic Model Parameters. The deterministic

component of the GR (eq 2) was optimized in terms of the
regression coefficients and annual intercepts. The regression
coefficients (β̂p) indicate how BWDO is related to the various
predictor variables; all parameters are significantly different
from zero (p < 0.05, Table 1). Because the predictor variables

were normalized, the magnitudes of the parameter values
demonstrate their relative impacts on BWDO. The regression
coefficients for northing (N) and depth (D) suggest that
BWDO concentrations tend to be lower at locations that are
shallower and farther north (i.e., closer to shore). This is likely
because the near-shore waters mix less with the more
oxygenated and less eutrophic deep-shelf waters. As expected,
the regression coefficients for the stratification metrics all
indicate BWDO tends to be lower in areas of intense water
column stratification. Annual intercepts (β̂a) ranged from 1.66
to 3.50 mg L−1, and are discussed further in Section 3.2. For the
10 year study period, the deterministic component of the

Table 1. Regression Coefficients (β̂p) with Standard Errors
(σβ̂) for GR

a

variable β ̂p σβ̂

northing, N −0.77 0.11
depth, D 0.83 0.12
salinity diff., ln(ΔS) −0.43 0.11
max. salinity, Shi −0.45 0.10
salinity gradient, Sg −0.21 0.07
temp. diff. ln(ΔT) −0.62 0.13
min temp. Tlo 0.69 0.15

aUnits are mg L−1.
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model (Xβ̂) explains 52% of the variability in BWDO across
space and time. For individual years, the deterministic
component of the model explains from 27% to 61% of the
spatial variability in BWDO. The remaining spatial variability
may be due largely to the effects of varying coastal current
patterns that can influence transport of fresh water, nutrients,
and organic matter. The stochastic portion of the model, which
accounts for this remaining variability, has substantial spatial
correlation, consistent with current patterns acting across large
spatial scales. Additional model details including the covariance
parameters, a test of the linearity assumption, and site specific
results are provided in the SI.
3.2. Analysis of Interannual Variability. The results of

the GR can be summarized on an annually averaged basis to
analyze the interannual variability of the factors affecting mean
BWDO concentration. Figure 2 illustrates how mean BWDO is

affected by northing and bathymetry; salinity stratification
(ln(ΔS), Shi, and Sg); temperature stratification (ln(ΔT) and
Tlo); and annual intercepts. The combination of these effects
can be used to exactly predict the estimated mean BWDO (eq
7). For illustrative purposes, however, each factor is presented
as a BWDO depletion, calculated by determining each effect
relative to its year of minimum impact; for example,
temperature stratification was least severe in 2006 and most
severe in 2004. For each factor, the standard deviation of the 10
annual impacts is calculated, providing a metric for assessing
the degree to which each factor contributes to the interannual
variability of BWDO, with higher standard deviations indicating
greater contributions. From the figure, it is clear that
stratification has a substantial impact on the interannual
variability in BWDO depletion, and the standard deviation of
the net stratification effect (salinity plus temperature) is 0.51
mg L−1 BWDO. The standard deviation of the northing/
bathymetry effect is only 0.05 mg L−1 BWDO, which is
expected because there is little interannual variation in the
sampling locations used in this study. The greatest portion of
the interannual variability is accounted for through the annual
intercepts, with a standard deviation of 0.71 mg L−1 BWDO.
While these intercepts do not have intrinsic explanatory value,
they can be modeled in terms of other factors, such as nutrient
inputs.
The annual intercepts (β̂a) were first related to candidate

predictor variables through development of an elastic-net
model (Section 2.6). The resulting model (eq 11) includes six
selected variables. Here, variables enclosed in brackets
represent nutrient concentrations, while unbracketed variables
represent loads, and subscripts represent months. Because

variables were normalized, the regression coefficients indicate
their relative importance.

β ̂ = − × − ×

− × − ×

− × − ×

2.36 0.348 [NO ] 0.138 NO

0.107 Year 0.073 [NO ]

0.062 TKN 0.027 NO

a May May

Jun

Apr Apr (11)

The elastic-net model indicates May NO concentration has
the largest impact, followed by May NO load, which is
discussed more below. The trend with time (Year) also has a
relatively large effect, suggesting that hypoxia is becoming more
intense irrespective of seasonal nutrient inputs and stratifica-
tion. This is consistent with previous studies indicating
increasing hypoxia irrespective of seasonal nutrient loading7−10

or stratification,35 but this is the first study to suggest this trend
while considering both factors in combination. June NO
concentration and April TKN and NO loads are also included,
but appear to have relatively small effects. The selection of
TKN only for the month of April is consistent with this more
refractory nitrogen fraction requiring additional time to become
biologically available. The elastic-net model did not select any
of the variables for TP or flow, suggesting that these factors are
less important for predicting midsummer hypoxia. Overall, the
elastic-net model explains 85% of the variability in the annual
intercepts. Figure S4 (SI) graphically illustrates how the various
factors in eq 11 affect the annual intercepts.
We also developed a simple linear regression (SLR) for the

annual intercepts using May NO concentration alone (eq 12).
The NO concentrations were normalized so that the model
coefficients are comparable to those in eq 11. This model
explains 76% of the variability in the annual intercepts,
indicating that its performance is similar to the elastic-net
model, despite its relative simplicity.

β ̂ = − ×2.36 0.620 [NO ]a May (12)

The use of May (or May−June) nitrate data to predict
hypoxia has precedent in multiple previous studies,5−10 and is
reasonable given the known processes of phytoplankton growth
and bacterial decomposition that link nitrogen inputs to
BWDO depletion over time.1,11 However, while previous
studies generally indicate that load is the best single nutrient
predictor of hypoxia, this study indicates concentration.
(Greene et al.7 also consider models using flow and
concentration, but the confounding correlation between flow
and load was not addressed.) To explore this distinction
further, Figure 3 illustrates how May NO loads and
concentrations correlate with mean BWDO (eq 7) and the
annual intercepts. As shown, mean BWDO is somewhat
correlated with NO load (Figure 3a), and as expected, the
strength of this correlation (R2 = 0.41, p = 0.045) is similar to
that of previous studies relating nitrogen loads to hypoxic
area.5−10 The correlation between the annual intercepts and
May NO concentrations (Figure 3d), corresponding to the SLR
(eq 12), is much stronger (R2 = 0.76, p = 0.001). This
improvement can be attributed to the fact that here we use
nutrients to predict only the variability in hypoxia that remains
after accounting for stratification (i.e., the annual intercepts),
rather than the total variability in hypoxia (i.e., mean BWDO or
hypoxic area). If we do not remove stratification effects,
nutrient load is a better predictor of hypoxia than concentration
(Figure 3a versus 3b). This is as expected given load is

Figure 2. BWDO depletions attributed to different factors from GR
model; each factor presented relative to its year of minimum impact.
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correlated with flow, and higher flow tends to increase
stratification, making load partially reflective of both
stratification and nutrient concentration.
While these results suggest that nutrient concentration is the

best predictor of hypoxia (after accounting for stratification),
nutrient load may also be of some predictive importance. The
elastic-net model (eq 11) did include multiple nutrient loading
terms, though they generally had less impact than the
concentration terms. Similarly, Figure 3c indicates that there
is some correlation between the annual intercepts and May NO
load, though markedly less than with concentration.
From a mechanistic perspective, nutrient load is an intuitive

predictor of hypoxia based on the assumption that it is
proportional to the primary production and oxygen demand
that develops within the system. However, the importance of
concentration (as suggested by this study) indicates that the
amount of oxygen demand generated on the shelf is also
affected by the degree to which that load is diluted by flow. The
exact reasons for this are not readily apparent and could benefit
from further research. We note, however, that loads are highly
correlated with flows, and high flows can intensify coastal
current velocities,36 thus reducing the time available to produce
and settle organic matter within the study area. Also, because
biochemical process rates are typically concentration depend-
ent, dilution can reduce the rates of oxygen demand formation
and nutrient recycling.
The approach outlined in this study made it possible to

isolate the effects of stratification through GR, and then
determine the effects of nutrients based on the interannual
variability in BWDO that remained. Overall, the results suggest
that both river nutrient concentration and stratification play
large and comparable roles in determining the interannual
variability of hypoxia in the northern Gulf of Mexico. The
standard deviation of the net stratification effect is 0.51 mg L−1

BWDO, while the standard deviation of the May NO effect
(from the SLR) is 0.62 mg L−1 BWDO, indicating nutrients
may play a slightly larger role. When the annual intercepts
predicted by the SLR are used in combination with the net

stratification and northing/bathymetry effects, the overall
model explains a large majority (82%) of the interannual
variability in mean BWDO.
Because of its explanatory power, this approach provides a

more precise way to evaluate the response of Gulf hypoxia to
changes in Mississippi River nutrients. Scavia et al.5 note that
when hypoxia is modeled using nutrient loads alone, the
interannual variability in oceanographic conditions can mask
the effects of changes in nutrient loading, at least in the short
term. This can confound management of the system by
obscuring the effect of watershed management practices aimed
at curtailing nutrient inputs. However, by using the approach
outlined here, we separate the effects of stratification from the
effects of nutrients, allowing for a more detailed assessment of
how each is impacting hypoxia over time. Although the
intensity of stratification can be difficult to predict in advance
because it varies over short time scales due to wind forcing,36 it
can likely be approximated using river flow and climate data.
For example, the May river flow alone explains 27% of the
variability in the net stratification effect determined by this
study. The stratification effect can also be determined following
each midsummer monitoring cruise using the measured salinity
and temperature profiles, as was done here.
While May NO concentration and load were not well

correlated over the period of this study (R2 = 0.14); longer-
term trends in nitrate concentration and load have been shown
to be parallel.37 Thus, if the existing Action Plan is successful at
reducing NO load, it will likely also be successful in reducing
concentration. So, while we think that concentration should
receive more attention in future studies and in evaluating year-
to-year changes in hypoxic severity, we do not think this
emphasis on concentration is in discordance with the long-term
Action Plan goal of reducing nutrient loads.

3.3. Nutrient Reduction Scenarios. Stratification metrics
and river nutrient concentrations were also used to develop a
regression model for hypoxic area (y, km2), as described in
Section 2.7. In the model (eq 13), S is the aggregated BWDO
depletion due to salinity and temperature stratification (as
illustrated in Figure 2); and [NOMay] is the May NO
concentration. Both of the variables were normalized so that
the regression coefficients indicate their relative importance.
Overall, the model explains 79% of the variability in observed
hypoxic area.

= + × + ×y S15 300 3800 5500 [NO ]May (13)

We used the model to estimate the average hypoxic area for
different nutrient reduction scenarios, along with associated
uncertainty determined through Monte Carlo simulation (eq
9); and to estimate the percent nutrient reduction required to
consistently (over the 10 year study period) reduce the five-
year running average of hypoxic area to less than 5000 km2 in
accordance with Action Plan goals.3,4 Figure 4 illustrates how
nutrient reductions will affect the five-year running average of
hypoxic area for the critical period (1998−2002 is the critical
period because it requires the greatest nutrient reduction to
achieve the Action Plan goal). The model suggests that a 42%
reduction in May NO concentration is required, with a 90%
confidence interval of 29−62% reduction. The non-negativity
constraint (Section 2.7) had only a minor impact, resulting in a
recommended nutrient reduction of 42% instead of 41%. These
results support multiple previous modeling studies suggesting
nutrient reductions of around 40−45%,5,7,38 but are somewhat
lower than the 71% reduction recommended by Liu et al.10

Figure 3. Annual mean BWDO (top) and annual intercepts from GR
(bottom) versus May NO loads (left) and concentrations (right), with
95% confidence intervals.
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Note that these predictions assume the linear relationships in
eq 13 remain valid outside of the range of observed conditions.
If the effects of stratification become less severe under scenarios
of reduced nutrient inputs, this would make the estimated
loading reductions somewhat conservative. It should also be
noted that this study used recent data (1998−2007), so the
results generally reflect the system at its current state. If the
system becomes more or less susceptible to hypoxia over time,
as a result of long-term trends in nutrient loading, climate
change, or other factors, then the reductions required to meet
the Action Plan goal would also change.
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