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ABSTRACT: Hypoxic conditions, defined as dissolved oxygen (DO)
concentrations below 2 mg/L, are a regular summertime occurrence in
Lake Erie, but the spatial extent has been poorly understood due to sparse
sampling. We use geostatistical kriging and conditional realizations to
provide quantitative estimates of the extent of hypoxia in the central basin
of Lake Erie for August and September of 1987 to 2007, along with their
associated uncertainties. The applied geostatistical approach combines the
limited in situ DO measurements with auxiliary data selected using the
Bayesian Information Criterion. Bathymetry and longitude are found to be highly significant in explaining the spatial distribution
of DO, while satellite observations of sea surface temperature and satellite chlorophyll are not. The hypoxic extent was generally
lowest in the mid-1990s, with the late 1980s (1987, 1988) and the 2000s (2003, 2005) experiencing the largest hypoxic zones. A
simple exponential relationship based on the squared average measured bottom DO explains 97% of the estimated variability in
the hypoxic extent. The change in the observed maximum extent between August and September is found to be sensitive to the
corresponding variability in the hypolimnion thickness.

1. INTRODUCTION

Summer hypoxia is a natural phenomenon in the central basin
of Lake Erie, probably dating back thousands of years.1

However, evidence suggests that oxygen depletion rates
increased in the 1950s due to anthropogenic factors.2 During
summer, the strong vertical thermal gradient (i.e., stratification)
reduces mixing and hence the flux of oxygen into the
hypolimnion, where low light restricts photosynthesis. Decom-
posing phytoplankton and other settled organic matter
consume oxygen, often reducing it to below the 2 mg/L
hypoxic threshold in the hypolimnion.
Hypoxic areal extent is an important indicator for tracking

historical changes in water quality, and is often used as a
response metric for water quality management.3 However,
because of sparse sampling, the spatial and temporal dynamics
of hypoxia in Lake Erie are poorly understood. Various models
have been used to estimate the extent of hypoxia in Lake Erie.
Although one-dimensional4 and box water quality models5−7

have been used to describe temporal dissolved oxygen (DO)
dynamics, these are not well suited for assessing the hypoxic
spatial extent. Multisegment box models for Lake Erie have
provided estimates of the spatial distribution of DO, but their
spatial resolution is rather coarse. Burns et al.8 used linear
interpolation to estimate the maximum yearly extent of hypoxia
in the central basin of Lake Erie for 1983 to 2002 using the

yearly minimum observed DO for each of ten regular sampling
stations. Although simple techniques such as linear and
nonlinear interpolation9,10 and inverse distance weighted
interpolation11 can provide an estimate of spatial extent, they
do not rigorously account for the spatial correlation of the data,
do not provide quantitative estimates of uncertainties, and
generally cannot make use of auxiliary variables to improve
estimates.
Herein, we used the Bayesian Information Criterion (BIC),12

implemented within a geostatistical regression framework,13,14

to identify a set of auxiliary variables that inform the
distribution of DO in the central basin of Lake Erie. We then
applied Universal Kriging (UK; a.k.a. kriging with an external
drift) and conditional realizations15 to assess the spatial
distribution of DO using both the available DO observations
and the identified auxiliary data. These methods made it
possible to provide a detailed history of late-summer hypoxic
extent in Lake Erie from 1987 to 2007, to provide a rigorous
and quantitative assessment of associated uncertainty, and to
identify factors that correlate with this variability. This new
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historical data set was then used to explore the impact of
stratification dynamics on intraseasonal changes in hypoxic
extent, and to develop a simple model of hypoxic extent based
on the average measured bottom water DO concentration.

2. DATA DESCRIPTION AND EXAMINED CASE
STUDIES
Dissolved Oxygen. The in situ DO data used in this study

were collected by the U.S. EPA Great Lakes National Program
Office (GLNPO),16 the National Water Research Institute of
Environment Canada (NWRI),4 and the National Oceanic and
Atmospheric Administration (NOAA) Great Lakes Environ-
mental Research Laboratory (GLERL). GLNPO and NWRI
have been collecting DO data in April, August, September, and
October since the 1980s at ten fixed stations in the central basin
of Lake Erie (Figure S1, Tables S1 and S2 in the Supporting
Information).17 In addition, GLERL collected DO measure-
ments at approximately 60 locations in the central basin of Lake
Erie from May through October in 2005 and approximately 40
locations in the central basin in September 2007 as part of the
International Field Years on Lake Erie (IFYLE) program.18

Overall, the analysis presented here was based on 75 sampling
cruises for August and September between 1987 and 2007
(Tables S1 and S2), 61 of which detected hypoxia. Note that
within this study period, no DO data are available for August
1992, 1994, and 1995 or for September 1991, 2000, and 2006.
At each sampling location, DO concentrations were

measured at about 3-, 1-, and <1-m vertical intervals throughout
the water column for the GLNPO, NWRI, and GLERL cruises,
respectively. For our analysis, we used the DO observations
1 or 2 m above the lake bottom at each sampling location
(depending on the deepest available observations), which are
normally representative of the DO concentration in the
hypolimnion. The focus of our study was on August and
September, the months when the hypoxic extent is typically at
its maximum.19 We also restricted our analysis to the central
basin of Lake Erie, the basin most susceptible to hypoxia due to
its depth and nutrient loading.4

Auxiliary Data. To augment the sparse in situ DO
measurements, auxiliary variables with full spatial coverage
were considered in the analysis. These variables, chosen based
on availability and expected associations with DO, included
latitude, longitude, bathymetry, and satellite-derived monthly
average sea surface temperature (SST) and surface chlorophyll
concentration from April to September. The bathymetry data
are a subset of the New Bathymetry of Lake Erie and Lake St.
Clair from the NOAA National Geophysical Data Center.20

The chlorophyll data are derived from the Sea-viewing Wide
Field-of-view Sensor (SeaWiFS), and are available from the
National Aeronautics and Space Administration (NASA)
Ocean Color Web facility21 at a resolution of 9 km × 9 km
for 1998 onwards. SST data at 2.5 km × 2.5 km are available
starting in 1992 from Great Lakes Surface Environmental
Analysis (GLSEA),22 a digital map of the Great Lakes surface
temperature and ice cover produced daily from Advanced Very
High Resolution Radiometer (AVHRR) data by NOAA
GLERL. These GLSEA data are produced specifically for the
Great Lakes using a smoothing algorithm.23 All data were
regridded to a 2.5 km × 2.5 km resolution using nearest
neighbor interpolation.
Analyzed Cases. Because satellite data are not available for

the entire study period, we designed and compared two case
studies. Case 1 covered 1987 to 2007, and used only

bathymetry, latitude, and longitude as auxiliary variables.
Case 2 included these variables, plus the GLSEA SST and
SeaWiFS chlorophyll data for April through September, and
covered 1998 to 2007.

3. METHODOLOGY
This section describes the geostatistical framework for
estimating the hypoxic extent for the central basin of Lake Erie.

3.1. Universal Kriging. UK uses auxiliary variables, which
for the cases examined here included latitude, longitude,
bathymetry, SST, and chlorophyll concentrations, in addition to
the limited in situ DO measurements, to obtain a detailed
spatial model of DO for the central basin of Lake Erie. UK has
been widely used in the environmental sciences for applications
such as estimating snow accumulation, temperature, and
precipitation,24−26 characterizing contaminant distributions,27

and understanding emissions and uptake of carbon dioxide.13

Within the context of hypoxia, Murphy et al.28 used UK, among
other approaches, to interpolate water quality parameters such
as salinity, water temperature, and DO in the Chesapeake Bay,
using the output from a water quality model as auxiliary
information; and Obenour et al.14 used a UK-type model to
separate the impacts of stratification and nutrient loading on
DO in the Gulf of Mexico.
The role of auxiliary variables in UK is analogous to the role

of independent variables (covariates) in multiple linear
regression. Contrary to linear regression, however, UK also
(i) accounts for the spatial correlation (i.e., smoothness) of the
DO distribution, and (ii) is an exact interpolator, such that it
reproduces all the available DO observations to within their
measurement error. We performed UK using data from all the
cruises with hypoxic measurements simultaneously, such that
the relationship between auxiliary variables and DO remained
constant from cruise to cruise. The estimates of DO
themselves, however, were cruise-specific, and no correlation
was assumed among regression residuals from different cruises.
For each of the two examined cases, the n × 1 observation

vector z of DO is defined as:
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where zi (i = 1, 2, ..., y) are ni × 1 vectors of DO measurements,
ni is the number of DO measurements for the ith cruise (i.e.,
n =∑i = 1

y ni), and y is the total number of cruises for which DO
data are used in each case (y = 61 for Case 1; y = 32 for
Case 2).
Within the UK framework, the DO distribution is modeled

as the sum of a deterministic term (trend) and a zero-mean
stochastic term (spatially correlated residuals). The determin-
istic term represents the portion of the DO distribution that
can be explained by the available auxiliary variables and spatially
constant cruise offsets (corresponding to each cruise), and the
stochastic term represents the remaining portion of the
observed variability:

β= +z X zresz (2)

where Xz is a known n × (y + p) matrix of y categorical variables
(corresponding to unique offsets [i.e., intercepts] for each
cruise) and p auxiliary variables, β is a (y + p) × 1 vector of
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unknown drift coefficients on these variables, and zres is an
n × 1 vector of residuals. The approach used for selecting a
subset of auxiliary variables from among those listed in
Section 2 is presented in Section 3.2. Overall, the model of
the trend (Xz) is expressed as:
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where 1i (i = 1, 2, ..., y) are ni × 1 vectors of ones, and Xi is an
ni × p matrix of auxiliary variables representing the trend for
each cruise. Because the mean DO concentration is expected to
change from cruise to cruise, Xz includes y columns of
categorical variables (ones and zeros). The components in β
that multiply the first y columns of Xz represent a constant
offset in DO concentrations for each cruise.
The stochastic term (zres) is modeled as spatially correlated

residuals. A spatial covariance function,15 which quantifies the
degree to which the spatial correlation between a pair of
locations decays as a function of their separation distance (h),
was defined as:
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where σ2 is the variance of the portion of the residual DO
variability that is spatially correlated, 3l is the practical
correlation range, and σQ

2 is the variance of the portion of the
variability that is not spatially correlated (e.g., measurement
error). These three model parameters were optimized by fitting
the theoretical model (eq 4) to the empirical covariance of the
residuals using nonlinear least-squares.29 No covariance was
assumed among cruises, and the overall n × n covariance matrix
of the DO observations is therefore defined as:
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where Q i (i = 1, 2, ..., y) is an ni × ni covariance matrix for the
residuals in each cruise, and all the Q i’s use the same
covariance parameters (σ2, σQ

2 , and l).
The covariance matrix is used in the UK system of linear

equations:
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where Q zs is an n × m covariance matrix between the
measurement and estimation locations obtained analogously to
eq 5, the matrix Xs contains the same cruise-specific offsets and
auxiliary variables as in (Xz) but defined at the estimation
locations, and T denotes a matrix transposition. The system of
eq 6 was solved for Λ, which is an m × n matrix of weights
assigned to each observation for each estimation location, and
for M, which is a (y + p) × m matrix of Lagrange multipliers.
Finally, Λ and M were used to obtain estimates of the DO
distribution, and their associated uncertainties, throughout the
central basin

Λ̂ =s z (7)

Λ= − + −̂V X M Q Q T T
s s ss zs (8)

where s ̂ is an m × 1 vector of DO estimates, ̂Vs is the covariance
matrix representing the covariances associated with these
estimates, and Q ss is an m × m covariance matrix between
the residuals of estimates, obtained in the same way and using
the same parameters as in eq 4. The square roots of the
diagonal elements of ̂Vs are the standard deviations (i.e.,
estimation uncertainties) of the DO estimates. Because the
thermocline always appears at depths of 15−20 m during
summer,30 and because shallower areas are usually oxygenated
and rarely sampled, we constrained DO estimates for areas with
depths of less than 15 m to be above the hypoxic threshold.
The best estimate of drift coefficients (β̂) of the auxiliary

variables were obtained as:15

β ̂ = − − −X Q X X Q z( )T T
z zz z z zz

1 1 1
(9)

and their associated covariances were

=β ̂
− −V X Q X( )T

z zz z
1 1

(10)

where the square roots of the diagonal elements of β ̂V are the
estimation uncertainties of the individual parameters, and the
off-diagonal terms represent their estimated covariances.
Ordinary Kriging (OK), one of the most common

geostatistical approaches, was used for comparison to the UK
estimates as described in the Supporting Information.

3.2. Auxiliary Variable Selection. BIC was used to select
a subset of auxiliary variables that can reliably represent the
spatial distribution of DO.13,14 BIC is based on the Bayesian
factor or the posterior probability of a model,12 and considers
both the goodness of fit and the dimensionality of (i.e., the
number of variables in) the model.31 The BIC is defined as:

= − +L p nBIC 2ln( ) ln( ) (11)

where L is likelihood of the observations. If the residuals are
correlated and normally distributed, the negative natural
logarithm of the likelihood becomes:13
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BIC was evaluated for each possible combination/subset of
auxiliary variables, and the set of variables with the lowest BIC
was identified as the best model.

3.3. Conditional Realizations. UK yields estimates of DO
concentrations in space, but cannot be used directly to estimate
the hypoxic extent (i.e., the area where the DO concentration is
below a given threshold) and its associated uncertainty.
Conditional realizations (a.k.a. “spatially consistent Monte
Carlo simulations”)15 of the DO distribution do this by
providing equally likely alternative DO distributions. These
realizations follow the spatial covariance (Q ss) and are
consistent with all available observations.32−34

Each realization (sci , m × 1) was defined as:35

Λ= − +s z z s( )ci ui ui (13)

where Λ is the m × n matrix of weights defined in eq 6, and zui
(n × 1) and sui (m × 1) are unconditional realizations at
measurement and estimation locations, respectively, obtained
from
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where u is an (n + m) × 1 vector of normally distributed
random values with zero mean and unit variance (note that a
new vector u is generated for each realization), and C is the
(n + m) × (n + m) matrix resulting from the Cholesky
decomposition of the covariance matrix below:
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Conditional realizations were generated for regions of the
central basin with a depth greater than 15 m, and the hypoxic
area was calculated for each realization by summing the areas
with the DO concentrations below 2 mg/L. A thousand
realizations were generated for each cruise, and the results were
used to develop probabilistic estimates of hypoxic extent.

4. RESULTS AND DISCUSSION
4.1. Variables Explaining the Spatial Variability of DO.

The selected auxiliary variables, together with the cruise-specific
offsets, explained 53% of the DO variability for the 1987−2007
Case 1 data set. Consistent variable selections between Cases 1
and 2 indicate that the difference in the timespans does not
affect the significance of the auxiliary variables. The estimated
drift coefficients (β̂) for the selected auxiliary variables
(Table 1) explain a portion of the within-cruise spatial

variability, while the cruise-specific offsets (not shown) account
for temporal variability in DO due to other cofactors, such as
nutrient loading or circulation.4,30 The consistency of the β̂
values between cases further confirms that the relationships
between DO and the auxiliary variables are consistent for
different time periods.
Longitude, depth, and a quadratic depth term (i.e., depth

squared) were selected through the BIC analysis as being
significant for both examined cases (Table 1). Longitude was
found to be positively correlated with DO, potentially acting as
a proxy for phosphorus availability, which primarily enters the
central basin from the west. Bathymetry was also correlated
with DO, consistent with the fact that stratification is related to
bathymetry (i.e., both the thermal structure and thickness of
the bottom layer) in Lake Erie.36,37 Based on the regression
coefficients for depth and depth squared, the bottom water DO
concentration is expected to be lowest at a station depth of
around 23 m (close to the 24 m maximum depth of the central
basin), all other factors being equal.
Neither of the remote sensing data sets (only available in

Case 2) was found to significantly improve the model. In
general, this suggests a more complex relationship between lake
surface properties (SST and chlorophyll) and bottom DO.
Surface conditions are likely decoupled from bottom conditions
due to stratification and varying circulation patterns in the
epilimnion and hypoliminion. For example, Walker and

Rabalais38 suggested that a relationship between chlorophyll
and hypoxia was not observed in the Gulf of Mexico due to
various physical and biological processes that confound a direct
spatial correlation. In addition, the significance of chlorophyll
may have been further diminished due to the quality of the
satellite data product, which is known to have considerable
uncertainty in the central basin.39

4.2. History of the Hypoxic Extent of Lake Erie.
Because the two examined cases yield consistent estimates of
the hypoxic extent and use the same auxiliary variables, we
restrict our discussion to the extents and uncertainties
determined in Case 1. The extents were derived from the
conditional realizations of the DO distribution (Figure S2), and
the maximum estimated hypoxic extent for August and
September of each year and associated uncertainty
(Figure 1a) show that the maximum extent occurs most
often between late August and mid-September (Figure S2).
Results are qualitatively consistent with those of Makarewicz

and Bertram,40 as well as Hawley et al. (Figure 2).18

Makarewicz and Bertram40 reported that hypoxic extent
decreased from the late 1980s to early 1990s as a result of
the phosphorus load abatement programs, a part of the United
States/Canada Great Lakes Water Quality Agreement of
1972.41 Hawley et al.18 subsequently reported that hypoxic
extent increased and remained relatively high in the late 1990s
and early 2000s, likely due to an increase in nonpoint source
phosphorus loading or nutrient recycling by dreissenids (i.e.,
zebra and quagga mussels) that appeared in the system in the
late 1980s.42

The smallest yearly hypoxic zones were observed in 1995 and
1996 (Figure 1a, Figure S2), but these years had only one and
two cruises, respectively (Table S2). In 1995, the only available
data were from mid-September. In 1996, August sampling data
were available for August 2−4, followed by sampling in mid-
September, and at only five locations. It is therefore possible
that periods with larger hypoxic zones were missed in those
years. In 2002 and 2004, for example, the hypoxic extent was
also small in early August and mid-September, but was larger
during the interim period (Figure S2). On the other end of the
spectrum, the largest estimated hypoxic extents exceeded
9000 km2 (nearly two-thirds of the surface area of the central
basin deeper than 15 m) in early and mid-September 1987, late
August 1988, early September 2003, and mid-September 2005.
For a given number of measurements, the uncertainties

associated with the estimated extents are generally higher for
months with larger hypoxic areas. These uncertainties (ex-
pressed as 95% confidence intervals) range from nearly zero for
mid-September 2002 when hypoxia was negligible, to almost
6000 km2 for September 1999. Months with large hypoxic
extents have considerable areas with estimated DO concen-
trations close to the 2 mg/L hypoxic threshold, leading to the
large uncertainty on the exact area that is hypoxic. Uncertainties
are, as expected, higher for cruises with fewer measurements,
such as for mid-September 1994, when only 5 measurements
were available and the 95% confidence intervals span 7000 km2

(Tables S1 and S2). Compared to other years with similar
hypoxic extents, uncertainties for September 2005 and 2007 are
smaller due to the more extensive DO measurements available
for those two years through the IFYLE program by GLERL
(Figure S2).
The maximum hypoxic extent and its location in August and

September (Figures S3 and S4) vary from year to year. It is
most common in the western and middle northern portion of

Table 1. Drift Coefficients (β̂) and Associated Uncertainties
(σ β ̂) for the Selected Auxiliary Variables for the Two Cases

case longitude (mg/L)/degree depth (mg/L)/m depth2 (mg/L)/m2

1 1.24 ± 0.26 −1.40 ± 0.22 0.03 ± 0.006
2 1.17 ± 0.33 −1.36 ± 0.27 0.03 ± 0.007
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the central basin in August, spreading east in September, and
thus there is a greater probability of larger hypoxic areas in
September relative to August (Figure 2).
Annual estimates of the maximum hypoxic extent are

generally consistent with those of Burns et al.,8 who provided
the previously most complete analysis of Lake Erie hypoxia
(Figure 3). Their estimates are based on a location-by-location
selection of observation with the lowest DO throughout each
year. One would expect that using the lowest measured
concentration (especially from different times and different
locations) would tend to overestimate the maximum extent of
hypoxia. In addition, the lack of information from auxiliary
variables makes it difficult to represent DO distributions given
the very limited number of in situ DO observations, as seen by
a comparison of UK and OK estimates (Figures S5 and S6). A
quantitative or probabilistic comparison was not possible
because Burns et al.8 did not include actual values of hypoxic

area or its uncertainty. Nonetheless, the estimates presented
here are qualitatively consistent with Burns et al.,8 supporting
the notion that central basin hypoxia was more extensive in the
late 1980s and late 1990s compared to the early 1990s.

4.3. Relationship of Areal Extent to Average Bottom
DO Concentration at the Regular Stations and to
Thermocline Depth. The estimates of hypoxic extent
presented above were based on a sequential application of
BIC, UK, and conditional realizations. Based on these results,
we developed a simple exponential relationship for predicting
hypoxic extent using the square of the average measured DO
from the ten regular sampling locations (Figure 4, Figure S1).
This model explains 97% of the variability in these estimated
hypoxic extents:

= −E DO9.30exp( /7.09)m
2

(16)

where E is hypoxic extent (103 km2) and DOm is the mean of
the DO concentration (mg/L) across the ten sites with regular
observations (Figure S1). The two model parameters were
obtained through a least-squares fit to the estimated hypoxic
extent from all conditional realizations, and therefore account
for the varying uncertainty of the estimates across individual
cruises. The ten regular sampling locations could be used as
index stations for obtaining estimates of hypoxic extent for
times when detailed analyses such as the one presented are not
done.
During the sampling cruises, vertical temperature profile data

were also collected, allowing us to analyze our results relative to
the thermal structure of the lake. We found that the change in
hypolimnion thickness (a correlate for thermocline depth) from
August to September (Figure 1b) is an important predictor of
seasonal change in hypoxic extent. For each month, the
hypolimnion thickness was determined by averaging the
measured hypolimnion thickness across monitoring stations
for the cruise with the maximum observed hypoxic extent.

Figure 1. History of (a) the observed maximum hypoxic extent in August and September in the central basin of Lake Erie for 1987 to 2007, and (b)
August to September change in hypolimnion thickness. In (a), solid circles represent months where cruises indicated no hypoxia; for months when
hypoxia was observed, open circles represent the median, solid lines represent the interquartile range, and dashed lines represent the 95% confidence
intervals based on the conditional realizations. Years when the August to September decrease in the hypolimnion thickness was less than 2 m (i.e.,
years with stable stratification) are indicated in purple in panels (a) and (b); conversely, years with a decrease of more than 2 m, corresponding to a
deepening thermocline and early reoxygenation, are indicated in light blue. Data of changes in hypolimnion thickness are not available for 1996 and
2004.

Figure 2. Areas with 20% and 40% probability of hypoxic conditions in
August and September (1987 to 2007), based on estimated maximum
monthly hypoxic areas (Figures S3 and S4).
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Substantial deepening of the thermocline between August and
September, as indicated by a decrease in hypolimnion thickness
of more than 2 m, is associated with early reoxygenation of the
basin, and a corresponding decrease in the hypoxic extent. This
decrease in hypoxic extent is statistically significant for four of
the six such years for which DO data were available in both
August and September (p ≅ 0 for 1990, 2001, 2002; p = 0.05
for 1988; p = 0.06 for 1998; p = 0.18 for 1993). Conversely, a
smaller change in the hypolimnion thickness is consistent with
more stable stratification and an expansion of hypoxic extent
between August and September. This expansion is significant
for six of the seven such years (p ≅ 0 for 1987, 1989, 2007;
p = 0.01 for 1997, 2005; p = 0.02 for 2003; p = 0.13 for 1999).
This finding illustrates the importance of timing and thermal
structure on the size of the hypoxic zone; and these factors
should be considered (along with biological drivers, e.g.,
nutrient stimulated productivity) when exploring the inter-
annual variability of hypoxia in Lake Erie.
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■ NOTE ADDED AFTER ASAP PUBLICATION
There was an error in the y-axis of Figure 1 of the version of
this paper published January 3, 2013. The correct version
published January 15, 2013.
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