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ABSTRACT: For almost three decades, the relative size of the
hypoxic region on the Louisiana-Texas continental shelf has
drawn scientific and policy attention. During that time, both
simple and complex models have been used to explore hypoxia
dynamics and to provide management guidance relating the
size of the hypoxic zone to key drivers. Throughout much of
that development, analyses had to accommodate an apparent
change in hypoxic sensitivity to loads and often cull
observations due to anomalous meteorological conditions.
Here, we describe an adaptation of our earlier, simple
biophysical model, calibrated to revised hypoxic area estimates
and new hypoxic volume estimates through Bayesian
estimation. This application eliminates the need to cull
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observations and provides revised hypoxic extent estimates with uncertainties corresponding to different nutrient loading
reduction scenarios. We compare guidance from this model application, suggesting an approximately 62% nutrient loading
reduction is required to reduce Gulf hypoxia to the Action Plan goal of 5000 km?, to that of previous applications. In addition, we
describe for the first time, the corresponding response of hypoxic volume. We also analyze model results to test for increasing
system sensitivity to hypoxia formation, but find no strong evidence of such change.

B INTRODUCTION

For almost three decades, the relative size of the hypoxic region
on the Louisiana-Texas continental shelf has drawn scientific and
policy attention.'™® During that time, several models, from
simple regressions’ '®> to more complex biophysical mod-
els,"*"'® have been used to explore hypoxia dynamics and
provide management guidance relating the size of the hypoxic
zone to key drivers that can be controlled, such as nutrient
loads.'”~%°

During the course of that development several efforts,
including our own, explored what was believed to be a change
in the sensitivity of hypoxic area to nutrient loads based on, for
example, changes in the ratio of hypoxia area to load and
alterations in biophysical model parameters required to improve
model fit.'>'**"** These analyses were based primarily on the
apparent fact that hypoxic area increased over the time period of
analysis, whereas the nitrogen load had not. However, a recent
reassessment of the time course of hypoxic area, based on
statistically rigorous geospatial estimation methods,” showed
that those increases in hypoxic area were, at least in part, artifacts
of sampling design and interpolation limitations, and that change
in hypoxic area over the last few decades was likely less than
previously thought. That work did indicate, however, that
hypoxic volume may have increased more than hypoxic area.

Several simulation and forecast models developed during this
time period also culled the observation suite,"”'! or otherwise
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strong tropical storms, because when those events occur near the
time of shelfwide hypoxia surveys they tend to mix the water
column and create smaller hypoxic areas. Other conditions, such
as the presence of relatively strong currents from the west “piling
up” hypoxic waters and reducing measures of areal extent,”'°
have also confounded models.

These three issues—apparent changes in sensitivity, impacts
of storms, and strong current reversals—have until now made
development of a temporally consistent and policy-relevant
model difficult. Herein, we describe an adaptation of our earlier,
simple biophysical model,'"” ™' calibrated to the revised area
estimates and the new volume estimates™ through Bayesian
estimation. This model eliminates the need to cull observations,
allows another test on changes in system sensitivity, and provides
revised scenario predictions and forecasts with uncertainties. We
compare guidance from this model to that made earlier for
setting target loads to reduce Gulf hypoxia to the Action Plan
goal of 5000 km™.
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B MATERIALS AND METHODS

Data. May total nitrogen (TN) loading,”* computed as the
sum of Kjeldahl nitrogen, NO,, and NOj, for the Mississippi (at
St. Francisville, MS) and Atchafalaya rivers (at Melville, LA) was
the primary model driver. Hypoxic area and volume estimates
and their uncertainties were based on a reassessment™ of the
1985—2011 annual shelf-wide cruise data of the Louisiana
University Marine Consortium.”

Model. The model is the same as that developed originally to
relate Gulf of Mexico hy})oxic area to loads from the Mississippi
and Atchafalaya rivers.’ It has subsequently been used in
comparison to other models,'® for exploring nitrogen vs
phosphorus control,"® to provide guidance for the 2001 and
2008 Gulf Action Plans,®” and to explore potential impacts of
climate-induced changes in nutrient delivery.** It is an adaptation
of the Streeter-Phelps river model that simulates oxygen
concentration downstream from point sources of organic matter
loads based on mass balance equations for oxygen-consuming
organic matter, in oxygen equivalents (i.e., biochemical oxygen
demand, BOD), and dissolved oxygen concentration (DO).
Assuming no upstream oxygen deficit, and ignoring longitudinal
dispersion, the model’s steady state solution for DO is:

for x < 220 km

k4BOD,,
Doy(x) = DOs - u (6(_kdx/") _ e(—klx/v))
k, — k4
for x > 220 km
k4BOD,,

DO =DQO, -
() s[kr_kd

i )(e(—kdx/v) _ e(—k,,x/v))

3 (kdBODa,y ](e(—kd(x—ZZO)/v) _ e(—kr(x—220)/v))

kr_kd

Where y = year index, x = distance from the Mississippi River
mouth (km), DO = DO (mg L™'), DO, = DO saturation
concentration (mg L), ky = first order organic matter decay rate
(d™"), k, = first order reaeration rate of the lower layer (d™'), and
BOD = BOD load for the Mississippi (m) and Atchafalaya (a)
rivers (where the Atchafalaya River enters 220 km west of the
Mississippi River). In the original Streeter-Phelps model for
rivers, v represents the downstream velocity in km d™". However,
in this application, its interpretation is more complicated because
itis a bulk calibration parameter that represents a combination of
the net effect of surface and bottom layer flow and sinking of
organic matter into the bottom layer.

Organic matter load and associated BOD was approximated by
multiplying TN loads by the Redfield ratio to convert nitrogen to
algal carbon (5.67 gCgN™'), and by assuming an oxygen
equivalent (e.g, respiratory ratio) of 3.47 g0,gC ~'. We assumed
50% of the Mississippi River load moved east or offshore and did
not contribute to hypoxia development,26 and that all of the
surface algal production settled below the pycnocline.

The model produces a subpycnocline DO concentration
profile stretching from the mouth of the Mississippi River toward
the Louisiana-Texas border. From that profile, we determined
the total length for which DO < 3 mg L™". A value of 3 mg L™
was used because that average subpycnocline DO concentration
roughly corresponds in time to a bottom water DO
concentration of 2 mg L™ and hypoxic conditions.'” Hypoxic
length is then converted to area (areay) using an empirical
formula determined from geospatial model output: area, = 57.8

length,. Hypoxic volume (vol,), when modeled, is determined as
vol, =area, X 7, + areay2 X T,, where 7; and 7, are empirical model
parameters. This nonlinear relationship between volume and
area represents the fact that hypoxic thickness tends to increase
with increasing hypoxic area.””

Bayesian Calibration. Calibration was conducted using
Markov Chain Monte Carlo (MCMC) implementation of Bayes
Theorem using WinBUGS (version 1.4.3) called from R (version
2.6.0, R2WinBUGS, version 2.1-8). The use of Bayesian
calibration allows all parameters to be represented as probability
distributions, thus ensuring propagation and quantification of
uncertainty. The calibrated joint posterior parameter distribution
reflects the prior parameter distributions (described below)
updated by the joint maximum likelihood parameter distribution
(reflecting a least-squares fit to the calibration data set).>” All
calibrations were run until full mixing was achieved between
three independent MCMC chains, indicating convergence on
the posterior parameter distribution. Mixing was monitored
using the ratio of among chain to within chain variance (#), and
chains were considered mixed when # < 1.1 for all parameters.”’

Unless otherwise noted, the following constants and prior-
distributions were used: DO, = 7 (consistent with surface layer
observations), k, = 0.1,%® k;~ U(0.001,0.01), v ~ U(0, 10), 7, ~
N(5,3.2)1(0,), and 7, ~ N(5,3.2)I(0,) where N and U represent
normal and uniform distributions, respectively. The numbers in
the first parentheses are the mean and standard deviation (SD)
for normal distributions or lower and upper bounds for uniform
distributions, and I1(##) indicates truncation at the values in the
parentheses.

Uncertainty in model predictions was accounted for based on
the following relationships:

2
areay ~ N(areapredict,y’ o area)

2
VOly ~ N(VOlpredict,y o vol)

Similarly, uncertainty in the geostatistical (geo) model
estimates™ was accounted for using:

2
areag,, , ~ N(area,, 0° ., )

2
volye,, ~ N(vol,, 6%, )

In these equations, area, and vol, can be thought of as the true
(but unknown) extent distributions, which are only considered
internally within the model.”

Model Comparison. We explored three models without
excluding any years: (1) model of hypoxic area, allowing v to vary
by year, (2) model of hypoxic area, with all parameters held
constant across all years, and (3) model of hypoxic area and
volume allowing v, k, and 7; to vary based on approximated
weather affects. For cases 1 and 2, the priors were used as
described above, except that v was estimated for each year in case
1.

Case 3 explored explicitly weather impacts on hypoxic area and
volume. We categorized 1998 and 2009 as years with unusually
strong westerly winds in the two month period preceding the
shelfwide cruise (“wind years”). The westerly wind velocities for
these years were 0.96 and 1.11 m/s, respectively, compared to a
mean of —0.44 m/s. We categorized 1988, 1989, 1997, and 2003
as “storm years” because they met two criteria: (1) according to
NOAA storm track data, there were tropical storms or hurricanes
in the vicinity of the study area within two weeks of the beginning
of the shelfwide cruise and (2) based on coastal weather stations,
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wind stresses (wind speed squared) were unusually high in the
two weeks leading up to the shelfwide cruises (>35 m*/s?). The
wind velocity and wind stress data used in this analysis are
averages from stations at Sabine Pass and Southwest Pass, with
missing data supplemented from Calcasieu Pass and Grand Isle,
respectively.

For “wind years”, the flow-dependent v was fit with a prior v,, ~
U(0, 10) and 7,,, was fit with the prior 7;,, ~ N(5,3.2)I(0,). For
“storm years”, the reaeration term (k) was fit with a prior of k,,,
~U(0,0.5). All other parameter values were held constant across
categories with the priors or values given above.

Rate Calculations. Profiles of subpycnocline water column
respiration were calculated as the product of ky and the
concentration of BOD. Means and SDs were calculated across
years for each model segment, and spatial average and SD values
were then calculated across model segments corresponding to
the spatial ranges of available comparison studies.

B RESULTS AND DISCUSSION

As in the original model application,'” the overparameterized
calibration allowing v to vary by year (case 1) explained most of
the interannual variability of area (area R* = 1.00, Table 1);

Table 1. Parameter Estimates for Case 1, With Values of v
Allowed Varying Each Year and All Other Parameters
Constant

mean SD 2.5% 97.5%
kq 0.091 0.008 0.071 0.100
Prrea 2.78 2.74 0.11 9.43

however, in contrast to earlier applications using the uncorrected
hypoxic area data set,'”*>*! v showed considerable variability but
little pattern with time (Figure 1). The wind and storm years
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Figure 1. Case 1 estimates of v. Black symbols are normal years, blue are
storm years, and red are wind years.

tended to be among the lower v’s. This case demonstrates the
ability of the model formulation to fit the observations closely, if v
is known. However, because v represents an unknown
combination of physical conditions, a model specifying v for
each year is of little predictive value. In earlier applications,'”** v
for prediction purposes was drawn from the distribution of
annual v’s, holding all other parameters constant, in Monte Carlo
simulations. Here, in cases 2 and 3, we treat it as one of the values
to be estimated in the Bayesian application.

Fitting all parameters as constants across all years (case 2)
produced a moderate fit to hypoxic area (R* = 0.50) with
parameters falling within ranges estimated in previous
applications (Table 2). This model fit was slightly better than
in the original application (R* = 0.45), which covered a smaller

Table 2. Parameter Estimates for Case 2 with All Parameters
Held Constant

mean SD 2.5% 97.5%
v 2.16 0.31 1.80 3.05
kq 0.03 0.02 0.02 0.08
Crrea 4.43 0.76 3.20 6.12

study period and was calibrated to an earlier version of hypoxic
area estimates.'” We tested model residuals for a trend with time
by developing a simple linear regression of residuals as a function
of time (year), accounting for model and observation
uncertainty. Our analysis does not indicate a significant trend
(slope = 42 + 131 [+standard error] km?/yr) as the 90% credible
interval includes zero (i.e., the slope coefficient is less than 1.65
standard errors from zero). Thus, the case 2 results provide no
strong evidence for the changes in s3ystern sensitivity that have
been suggested by earlier studies.">'>?"*?

Table 3. Parameter Estimates for Case 3, With Weather
Categories for v, 7, and k,

mean SD 2.5% 97.5%
v normal years 225 0.22 1.99 2.83
v wind years 1.09 0.25 0.67 1.61
7, normal years 2.05 1.01 0.18 3.87
7, wind years 4.94 1.79 1.69 8.73
T, 0.11 0.06 0.01 0.23
kg 0.026 0.010 0.017 0.050
k, storm years 0.15 0.03 0.11 0.20
e 3.07 0.69 1.90 4.56
I 13.81 4.04 7.03 22.94

vol

The case 3 model (Table 3, Figure 2) that uses weather
categories is a better fit to the observations, with 69% of the
interannual variability in area and 61% of the interannual
variability in volume explained. An analysis of residuals (Figure
3) hints at an upward trend in hypoxic volume, but for neither
area nor volume are the trends statistically significant (slope = 75
+ 100 km?/yr for area and 0.72 + 0.50 km®/yr for volume).

The critical new feature of case 3 was to allow the coefficient, v,
to take on a different value in years when there were strong
westerly winds (Table 3). The resulting difference (2.24 in
normal years; 1.09 in strong westerly wind years) is expected
because v includes the effect of currents and one would expect
westerly winds to impede westward flow. The resulting estimates
of hypoxic thickness (combined effect of 7; and 7,) were also
consistent with strong westerly winds generating thicker layers
(71,0 = 4.94) compared to normal years (7, = 2.05). Allowing the
mixing term, k,, to take on different values during storm years,
resulted in a mixing rate slightly higher (0.15 vs 0.1) than for
nonstorm years. The primary advantage of case 3 over earlier
applications'®?" is that it accounts for the variability of all years
(ie, no outliers) and model performance is substantially
improved over the version with constant parameters (case 2).
Rather than dropping the 12 observations from the six outlier
years, we add only three parameters (v and 7, for “wind years”
and k, for “storm years”). In addition, in doing so, the altered
parameter estimates are consistent with expected physical
changes. Because of these benefits, we focus on case 3 throughout
the remainder of this discussion.
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Figure 2. Modeled (diamonds) and observed (boxes) hypoxic area (top) and volume (bottom) for case 3 with 95% CI as error bars. Black diamonds
represent model output for normal years, blue diamonds for storm years, and red diamonds for wind years.
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Figure 3. Case 3 model residuals for hypoxic area (top) and volume
(bottom). Black symbols are normal years, blue are storm years, and red
are wind years.

When comparing modeled rates of subpycnocline oxygen
consumption from earlier applications'”*' to observations,
modeled rates fell within the rather broad range of observations
available at the time. However, Murrell et al.>" recently pointed
out that those modeled rates fall considerably outside the range
of their more recent and more comprehensive measurements.
Therefore, we compare the results from this version of the model
with those estimates (Figure 4), as well as to those from another
recent set of observations that include both water column and
sediment oxygen consumption rates.>> Given the variability
associated with the observations and the rather simple
biophysical abstraction of the model, modeled rates are
reasonably consistent with the two sets of measurements. This
difference from our earlier applications™>*' is a result of different
estimates of k..

Murrell et al.*' reported bottom-layer and mid-depth water
column respiration across the entire hypoxic shelf region

throughout spring and summer 2003—2007. The mean and SD
of their observations for March—August are 0.24 + 0.023 and
0.26 + 0.080 mg/L/day, respectively (from their Table 2).
Assuming, as they did, that sediment demand is approximately
20% of water column demand (also consistent with McCarthy et
al.*?), the means would approach 0.29 and 0.32 mg/L/day. For
comparison to those measurements, our corresponding sub-
pycnocline rates and SD are 0.5 + 0.3, averaged over the model
domain of 50—400 km from the mouth of the Mississippi River.
In another study, McCarthy et al.>* measured subpycnocline
respiration and sediment oxygen demand during spring and
summer 2008—2011, primarily on the eastern portion of the
shelf. Using their areal rates, their estimates of corresponding
subpycnocline thickness, their average sediment demand of
0.073 mg/L/day for cases when it was not measured, and
omitting the September 2008 station they describe as
significantly influenced by hurricanes, we calculate rates of 0.65
+ 0.26 mg/L/day averaged over May—September. For
comparison to those measurements, our corresponding rates
and SD are 0.44 + 0.29 for all years, averaged over the model
domain from 70 to 225 km from the mouth of the Mississippi
River. The model profile, with high respiration rates near the
mouths of the Mississippi and Atchafalaya rivers (Figure 4), is a
consequence of the simplifying assumption that those loads are
treated as point sources of BOD at the discharge points.

Because the Action Plan goal is based on a 5-year running
average and because “storm” and “wind” years are often absent
for extended periods (e.g, 1990—1996 and 2004—2008),
response curves and credible intervals for management scenarios
(Figure S) are based on case 3 parameters for “normal” years.
However, for annual forecasting purposes, where the future
weather condition is unknown, the forecast and credible interval
are based on sampling from the case 3 parameters for all weather
conditions (normal, wind, and storm years) at the proportion of
the years these different weather conditions have occurred
throughout the study period. As one would expect, the
forecasting credible intervals assuming unknown weather are
relatively wide. (It may be possible to update forecasts a week or
two prior to the monitoring cruise when weather conditions
become more clear.)
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Figure 4. Comparison of modeled and measured subpycnocline respiration rates. Case 3 modeled respiration for different weather categories as solid
(black and red) lines. SD of modeled normal (& storm) respiration as dotted black lines (here, the SD reflects yearly loading variability and model
uncertainty). Green circles are from Figure 4 in Murrell et al.>' with error bars representing SD (calculated from their standard error and number of
samples). Blue circles are from McCarthy et al.*> Triangular symbols represent March—August mean and SD from Table 2 in Murrell et al.*' and model
output averaged over the spatial domain corresponding to the Murrell et al. Square symbols represent the cruise mean and SD from McCarthy et al.
(blue box), and model output averaged over the spatial domain corresponding to McCarthy et al.
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Figure S. Case 3 response curves for hypoxic area (top) and volume
(bottom) as a function of May TN load. Observed areas and volumes are
shown as green circles with 95% CI; circles with blue outlines denote
storm years and red outlines denote wind years. The best estimate curve
for normal years is represented by the black solid line. The 95% CI for
the mean response of normal years is represented by dotted black lines.
The 95% CI for individual annual responses (i.e., the forecast
uncertainty) is represented as dashed black lines assuming normal
weather, and as dashed gray lines for unknown weather. Red vertical and
horizontal lines represent the 2007—2011 average May TN Load and
the load required to achieve a 5,000 km* hypoxic area.

These results (Figure S) indicate that to reach the S-year
running average Action Plan goal of 5000 km® (ie, a 70%
reduction from the 2007—2011 mean hypoxic area), the May TN
load would have to be reduced by 62% (54—71% CI) from the
2007-2011 average of 7160 MT/day. Recommendations in the

past have suggested reducing the annual TN load by 45—55%
from the 1980—1996 average.® The new recommendation of
62% reduction is consistent with that range, recognizing that the
2007—2011 May TN load is roughly 10% higher than the 1980—
1996 average load. It is also interesting to note that we project the
62% reduction in May TN load will result in an approximately
84% reduction in hypoxic volume relative to 2007—2011
conditions (83 km? reduced to 13 km®).

This modeling application was calibrated to new hypoxic
extent estimates, as determined from a recent study using
statistically rigorous geospatial estimation methods.”® As such,
this is an important update to earlier hypoxia modeling studies
based on previous hypoxic area estimates.'®'!>!1719722
However, this update does not alter the requirement that
substantial loading reductions are needed to reach the Action
Plan goal of a 5000 km” (or less) average hypoxic area. Our
upward estimate of 62% reflects the fact that loads have increased
since the original Action Plan. In its review of the original hypoxia
assessment and subsequent work, the EPA Science Advisory
Board® noted in 2007 that the scientific basis for the need to
reduce the loads has become stronger while actions to implement
those reductions have lagged, and the U.S. Geological Survey*>
reported that little consistent progress had been made in
reducing riverine nitrate concentrations in the Mississippi River
and its tributaries since 1980, and that conditions are worsening
in some areas.

Another implication of our work is that hypoxic volume
appears to respond more dramatically to loading reductions than
does hypoxic area (i.e.,, 84% vs 70% reduction for the same load
reduction). This is because the thickness of the hypoxic zone
tends to increase with increasing area, as shown by Obenour et
al.>® and reflected in the parameter 7, of our model. Finally, we
demonstrated that by careful addition of a small number of
“special-case” parameters, related to years with unusual weather
conditions, we were able to develop a model that considers, as
opposed to removes, years dismissed as outliers in earlier
applications.

This adaptation of the Streeter-Phelps river model has been
used extensively for the Gulf of Mexico, where the strong coastal
current has been parametrized as a westward flowing stream. It
has also been applied successfully to the Chesapeake Bay,>**°
and could be a relevant option for modeling most drowned river
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mouth estuaries or systems that can be approximated as
fundamentally one-dimensional.
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