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A 1-dimensional, linked hydrodynamic and eutrophicationmodel was developed and calibratedwith 19 years of
observations (1987–2005) for the summer stratification period in the central basin of Lake Erie, corroborated by
comparison with observed process rates and areal hypoxic extents, and confirmed with observations from the
1960s and 1970s. The model effectively captures observations of both vertical and temporal trends in dissolved
oxygen, aswell as temporal trends in chlorophyll-a, phosphorus, zooplankton biomass, and several key processes.
The model was used to develop a relationship between external phosphorus load and hypolimnion oxygen
conditions, and then to establish load–response envelopes that account for inter-annual variability in physical
conditions driven by variation in meteorological drivers. The curves provide a valuable tool for reassessing
phosphorus loading targets with respect to reducing hypoxia in Lake Erie.

© 2014 Published by Elsevier B.V. on behalf of International Association for Great Lakes Research.
Introduction

Lake Erie experienced cultural eutrophication (Beeton, 1963),
recovery in response to load reductions (DePinto et al., 1986), and a
recent return to eutrophic conditions of the past (Bridgeman et al.,
2013; Burns et al., 2005; Zhou et al., 2013). Among symptoms of eutro-
phication, hypoxia (dissolved oxygen concentration below 2 mg·L−1)
has been a key indicator for Lake Erie's central basin (El-Shaarawi,
1987; Rosa and Burns, 1987) and excess phosphorus (P) loading from
point and agricultural non-point sources (Dolan, 1993; Dolan and
Chapra, 2012) has been the key driver in both its growth and recovery
phases.

In response to concern about the consequences of eutrophication in
the 1960 and 1970s, the governments of the U.S. and Canada, largely
through the auspices of the Great Lakes Water Quality Agreement
(GLWQA, 1978), implemented a program of P load reduction that was
globally unprecedented (DePinto et al., 1986). A combination of point
and non-point phosphorus load reductions achieved the target load of
11,000 metric tons per year, and the response of the lake was rapid,
profound, and close to that predicted by models. However, despite
this apparent success at reducing central basin hypoxia, eutrophication
reemerged in the mid-1990s and is now approaching extents of the
early decades (Zhou et al., 2013).

Among the several natural and anthropogenic factors potentially
responsible for altering hypoxic conditions, changes in climate and
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hydrology (Blumberg and Di Toro, 1990; Diaz, 2001) and changes in
phosphorus loading are key, and thus the subject of this analysis. To per-
form this analysis, we employed a 1-dimensional linked hydrodynamic-
eutrophication model for the Central Basin of Lake Erie. This model
offers three key innovations: 1) testing the system response variability
over 19 years of observed conditions; 2) employing a novel relationship
for estimating SODunder future loads; and 3) for thefirst time providing
simulations and forecasts for hypoxic area (as opposed to DO concentra-
tion) under a range of nutrient loads. Hypoxic area is a keymanagement
target, and this is the firstmodel to provide those projections.While the
potential role of the invasive benthic filter feeders (e.g., zebra and quag-
ga mussels; Woynarovich, 1961), the potential contribution of winter
diatom growth to summer oxygen demand (Twiss et al., 2013), and
the impact of circulation patterns (Beletsky et al., 2013; Rao et al.,
2008) cannot be discounted, they are not the focus of this paper.

Modeling approach

Several linked or coupled hydrodynamic-eutrophication models
have been developed for Lake Erie. The spatial sophistication of these
works has varied from a 1D approach as demonstrated here, to 2D
(Zhang et al., 2008) and 3D domains (Di Toro and Connolly, 1980; Di
Toro et al., 1987; Leon et al., 2011). The complexity of the biological
portion of themodels has varied greatly, ranging from simple statistical
relationships (Burns et al., 2005; Rosa and Burns, 1987; Rucinski et al.,
2010) tomodels usingdozens of state variables acrossmultiple environ-
mental media (Leon et al., 2011). All of these approaches have merit for
investigating specific forcings of hypoxia in Lake Erie, such as near shore
akes Research.
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Fig. 1. Morphometry of Lake Erie.
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nutrient cycling, or cross lake nutrient transport. However, they are
generally limited in their ability to provide forecast management
scenarios, either due to exorbitant computation time or lack of input
data at the required spatial and temporal scales. Our 1D approach allows
for quick simulation of several dozen hypothetical scenarios related to
reductions in nutrient loads, inter-annual variability in physical drivers,
and long-term change in sediment oxygen demand (SOD) associated
with such loads.
Fig. 2. Conceptual diagram of sim
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Rucinski et al. (2010) demonstrated,with a 1Dhydrodynamicmodel
linked to a very simple oxygen demandmodel that, after accounting for
inter-annual variability in temperature and mixing regimes driven by
meteorological conditions, there remains significant inter-annual
variability and trends in thewater column oxygen demand. This oxygen
demand is driven by in situ decomposition of autochthonous produc-
tion of organic matter, which is in turn driven by the availability of
phosphorus, the limiting nutrient. To explore those relationships, we
ple eutrophication model.
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developed a eutrophication model, driven by 19 years (1987–2005) of
observed nutrient loads and meteorology, to simulate the phosphorus-
driven production of organic matter and the contribution of its decay
to the evolution of hypolimnion hypoxia in the Central Basin. The
model was calibrated to water quality observations from the same
19-year period and compared to observed process rates where avail-
able. It should also be noted that this period includes both the decline
and the re-emergence of hypoxia through the 1990s (Zhou et al., 2013).

Our one-dimensional hydrodynamic model, representing the
offshore waters of the central basin (maximum 24 m in depth, Fig. 1),
provided the thermal structure and associated vertical mixing input to
the eutrophication model. Both models operate on the same spatial
scale of 48 half-meter thick layers. The 1-D physical model is based on
the Princeton Ocean Model (Blumberg and Mellor, 1987) and was
applied previously for Lake Michigan (Chen et al., 2002) and Lake Erie
(Rucinski et al., 2010). It uses the Mellor–Yamada turbulence closure
scheme to parameterize vertical mixing (Mellor and Yamada, 1982),
and is driven by hourlymeteorological observations from the Cleveland,
Ohio airport with overland–overlake correction described in Beletsky
and Schwab (2001).
Table 1
Equations and terminology of the eutrophication model.

Phytoplankton
∂Pcn
∂t ¼ Pgn−Prn−Pvsn þ Pvs2n þ Dif f u þ Dif f L−Out

Where: Pcn = phytoplankton carbon in model segment n
Pgn = phytoplankton growth in model segment n
Prn = phytoplankton respiration in model segment n
Pvsn = settling across the interface between segment n+1 and segment n
Pvs2n = settling across the interface between segment n−1 and segment n
Diffu = Turbulent dispersion across the interface between segment n−1

and segment n
DiffL = Turbulent dispersion across the interface between segment n+1

and segment n
Out = advection from model segment n to eastern basin

Zooplankton
∂Zoon
∂t ¼ Zgn−Zdn−Zrn−Out

Where: Zoon = zooplankton carbon in model segment n
Zgn = zooplankton growth in model segment n
Zrn = zooplankton respiration in model segment n
Zdn = zooplankton death in model segment n

Unavailable phosphorus
∂UPn
∂t ¼ Wupn−Pvsn þ Pvs2n þ Dif f u þ Dif f L þ UPrec;n−MinPn−Out

Where: UPn = unavailable phosphorus in model segment n
Wupn = unavailable phosphorus load in model segment n
UPrec,n = recycled unavailable phosphorus via zooplankton grazing and
phytoplankton and zooplankton death in segment n
MinPn = mineralization of unavailable to available P in segment n

Available phosphorus
∂APn
∂t ¼ Wapn−Pvsn þ Pvs2n þ Dif f u þ Dif f L þ APrec;n þMinPn−Out

Where: UPn = available phosphorus in model segment n
Wapn = available phosphorus load in model segment n
UPrec,n = recycled available phosphorus via zooplankton grazing and
phytoplankton and zooplankton death in segment n
MinPn = mineralization of unavailable to available P in segment n

Organic carbon
∂OCn
∂t ¼ Wocn−Pvsn þ Pvs2n þ Dif f u þ Dif f L−Oxidn þ Prn þ Zdn þ Zrn−Out

Where: OCn = organic carbon in model segment n
Wocn = organic carbon load in model segment n
Oxidn = oxidation of organic carbon in segment n

Dissolved oxygen
∂DOn
∂t ¼ Rearn þ Pgn− Prn þ Dif f u þ Dif f L−Oxidn−SOD−Out

Where: DOn = dissolved oxygen in model segment n
Rear = re-aeration at the surface
SOD = sediment oxygen demand in the bottom layer

Please cite this article as: Rucinski, D.K., et al., Modeling Lake Erie's hypoxi
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Calibration and confirmation of the hydrodynamic model are fully
described in Rucinski et al. (2010). Briefly, calibrationwas accomplished
using temperature data from 1994, representative of central basin open
water conditions, and confirmedwith data collected in 2005.Maximum
model error (represented as RMSE) varied with depth, and found to be
1.9 °C and 3.4 °C for 1994 and 2005, respectively. Both years exhibited
maximum errors near thermocline depth. While some model errors
can be attributed to either inaccuracies in forcing functions or model
physics (e.g. vertical mixing parameterization), others can be attributed
to 3D effects that are not represented in a 1D model, such as internal
wave propagation, horizontal and vertical advection and diffusion. In
particular, mid-lake thermocline conditions can be impacted by vertical
velocities (upwelling or downwelling) generated by wind stress curl
(Beletsky et al., 2012).

The hydrodynamic and eutrophication models are linked by first
simulating the thermal structure of themodel domain, and then passing
thehourly outputs from thehydrodynamicmodel (i.e., temperature and
vertical mixing coefficients) to the eutrophication model. Both models
are initialized annually because the ice cover periodwasnot represented
in this version of the PrincetonOceanModel. The date of initiation varies
annually, based on the earliest ice-free temperature observations; typi-
cally betweenmid-March andmid-April. Eutrophication state variables
are similarly initialized for each year, using the earliest cruise sample
concentration, generally occurring in March or April. Therefore, each
year was simulated separately, as opposed to a continuous 19-year
simulation.

The eutrophication model incorporates external phosphorus and
carbon loading, internal phosphorus and carbon cycling, algal growth,
death, and sinking, zooplankton grazing, oxygen consumption and
production, and sediment interactions (Fig. 2). Stoichiometry among
the state variables follows Redfield (1934). Algal growth rate is based
Table 2
Parameters, values and units used in the 1-D model.

Variable group Parameter Value Units Literature
range

Phosphorus Phosphorus half-saturation 0.001 mg·L−1 0.001a

Phosphorus Phosphorus:carbon ratio 0.01 0.01–0.05a

Phosphorus Mineralization rate 0.03 1/day 0.03b

Phosphorus Temperature coefficient 1.08 1.08a,b

Phosphorus Phosphorus settling rate 0.06 m/day
Light Physical light extinction 0.3 1/m
Light Self shading 0.3 (L/mgC)/m 0.2–0.7a

Light Photo period 0.5 day 0.3–0.7a

Light Saturating light intensity 350 ly/day 200–500a

Phytoplankton Max growth rate 2.7 1/day 2.0–3.0a

Phytoplankton Temperature coefficient 1.08 1.06–1.08a

Phytoplankton Optimal growth temp 22 C
Phytoplankton Respiration rate 0.1 1/day 0.075–0.125a

Phytoplankton Temperature coefficient 1.08 1.05–1.08a

Phytoplankton Settling rate 0.05 m/day 0.01–0.1a

Phytoplankton Temperature coefficient 1.028 1.02–1.028a

Phytoplankton Carbon:chlorophyll ratio 40 20–50a

Zooplankton Grazing rate 2 (L/mgC)/day
Zooplankton Respiration rate 0.03 1/day
Zooplankton Temperature coefficient 1.04
Zooplankton Grazing efficiency 0.6 0.6b

Zooplankton Death rate 0.05 1/day
Zooplankton Temperature coefficient 1.08 1.08b

Oxygen Surface transfer coeff. 0.2 m/d
Oxygen Temperature coefficient 1.024 1.02–1.028a

Oxygen Oxygen:carbon ratio 2.67 2.67a,b

Oxygen Oxygen:phosphorus ratio 267
Oxygen SOD 0.75 g/m2/d 0.2–4.0a

Carbon Oxygen half saturation 0.4 mgO2/L 0.5a

Carbon Oxidation rate 0.2 1/day 0.1b

Carbon Temperature coefficient 1.08 1.08a

Carbon Detritus settling rate 0.05 m/d

a Wool et al., 2002.
b Di Toro and Connolly, 1980.
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Fig. 3. Comparison of model (line) and data (open diamonds) for mixed-layer averages of dissolved oxygen 1987–2005.
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on uptake of available phosphorus following the Michaelis–Menten
relationship, light limitation as a function of a constant extinction coef-
ficient with self-shading from algal biomass, and water temperature.
Algal photosynthesis and respiration are temperature-dependent 1st
order rates, as are settling terms and mineralization of unavailable to
available phosphorus. For calibration, sediment oxygen demand (SOD)
is a 0th order areal flux (see below regarding SOD estimates for future
scenarios). These differential equations (Table 1) are solved using a
Euler integration scheme, and, with details on the kinetic processes
outlined in Supporting Information Table S1.
Please cite this article as: Rucinski, D.K., et al., Modeling Lake Erie's hypoxi
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Observations

Long-term (1987–2005) observations of dissolved oxygen (DO),
total phosphorus (TP), dissolved reactive phosphorus (DRP), and
chlorophyll-a (CHL) were compiled from several stations in the central
basin of Lake Erie. Zooplankton data were far less abundant, with only
the 2005 data used in this analysis. Data were obtained from multiple
sources, including EPA's online database (GLENDA), EPA's Great
Lakes National Program Office (GLNPO), Environment Canada's Water
Science & Technology Branch (ECWSTB), and the International Field
a response to nutrient loads and physical variability, J Great Lakes Res
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Fig. 4. Comparison of model (line) and data (open diamonds) for epilimnion mixed-layer average of dissolved reactive phosphorus 1987–2005.
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Years on Lake Erie Program (IFYLE, 2006) for central basin stationswith
an average depth of 20 m.

TP loads are from Dolan (1993) and Dolan and McGunagle (2005),
and DRP loads (available P in the model) are from Richards (2006)
and Richards and Baker (2002). Significant manipulation was required
to convert these data into model inputs. First, loads to the western
basin were routed to the central basin after accounting for a constant
net apparent settling loss of 10 m·yr−1 based on an estimate of basin
specific net apparent settling rates for phosphorus via a post-audit of
The Great Lakes Total Phosphorus Model (Lesht et al., 1991).

We then apportioned these TP loads, as well as those entering the
central basin, into available and unavailable portions on a daily basis
in the following manner. Dolan (1993) and Dolan and McGunagle
(2005) provide western and central basin annual water year (Oct–
Sept) loads. Richards (2006) and Richards and Baker (2002) provide
daily loads of both TP and DRP for the Maumee and Raisin rivers that
flow into the western basin and the Sandusky, Vermillion, Cuyahoga,
and Grand (Ohio) rivers that flow into the central basin. To apportion
the TP loads, we summed the daily loads into water year totals and
established a ratio of this subset of daily-derived annual loads to the
total basin loads. We then used this ratio to decompose the Dolan-
computed total basin loads to daily loads by applying the ratio to the
Fig. 5. Comparison of model (line) and data (open diamonds) for

Please cite this article as: Rucinski, D.K., et al., Modeling Lake Erie's hypoxi
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daily load time-series Richards (2006) and Richards and Baker (2002).
For example, if the total measured water-year Maumee plus Raisin TP
loads was 2500 metric tons, and the total western basin load from all
tributaries in that water year was 7500 metric tons, a scaling factor of
3.0 would be applied to the daily Maumee plus Raisin loads to provide
daily total western basin loads.

A slightly modified approach was used to estimate daily DRP loads.
We applied the daily DRP:TP ratio from Richards (2006) and Richards
and Baker (2002) to the daily TP loads derived after applying the net
apparent settling loss, as described above. Finally, the DRP load from
the Detroit River was based on the estimates by Dolan (1993) and an
average DRP:TP ratio from Richards (2006). Due to lack of available
daily Detroit River loading estimates over the study period, we assumed
that this portion of the load was constant. Particulate P load was esti-
mated as the difference between TP and DRP. Note that the eastern
basin loading is ignored in this analysis.

The base light extinction coefficient (0.3 m−1) was estimated from
extensive data on photosynthetic active radiation at varying depths in
the central basin (GLNPO). Measured sediment oxygen demand (SOD)
has not varied significantly over the analysis period, so for model cali-
bration and testing we used an average value of 0.75 gO2·m−2·day−1

(Matisoff and Neeson, 2005; Schloesser et al., 2005; Snodgrass, 1987;
epilimnion mixed-layer average of chlorophyll-a 1987–2005.

a response to nutrient loads and physical variability, J Great Lakes Res
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Fig. 6. Comparison of model (line) and data (open diamonds) for epilimnion mixed-layer average of zooplankton 2005.
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Snodgrass and Fay, 1987), corrected for temperature deviations
from 20 °C. Other rate coefficients were adjusted within the bounds of
literature values during calibration (Table 2).
Model parameterization and evaluation

Model performance was assessed by comparing model output to
state variable observations with the same parameter values over the
entire 19 year data set (1987–2005). Model coefficients were deter-
mined via an iterative calibration/corroboration process, focusing on
DO and CHL observations, and to a lesser extent on DRP and zooplank-
ton biomass because data for those constituents were less available.
While particular emphasis was placed on calibrating to the 1994 and
2005 observations because those years had themost observations, addi-
tional modest adjustments were used in the corroboration with other
years in the 1987–2005 dataset. Table 2 lists the coefficient values, as
well as calculated rates based on data (SOD, light extinction). Parame-
ters in bold italics are the ones that were adjusted. While data were
collectedmuch less frequently in some years, we believe that the length
of the record serves as an adequate corroboration dataset.
Fig. 7. Cross symbols with dashed error bars are 95% confidence intervals for individual cruises
imum for August–September. Open diamonds and gray error bars are monthly means and stan
Aug–Sept means and standard deviation.

Please cite this article as: Rucinski, D.K., et al., Modeling Lake Erie's hypoxi
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For comparisons, both model output and observations were aggre-
gated into mixed layer averages, representing the epilimnion,
metalimnion, and hypolimnion based on the temperature profiles
from the hydrodynamic model. The metalimnion was estimated as the
zone where the temperature gradient was at least 1 °C/m (Wetzel,
2001). Because stratification in the hydrodynamic model varies, the
depth of the bottom of the metalimnion (i.e., top of the hypolimnion)
changes both seasonally and annually as a consequence of meteorolog-
ical inputs.
Results

The model captures the temporal trends in DO, CHL, and zooplank-
ton (where data are available). Results for DO (Fig. 3), DRP (Fig. 4),
and CHL (Fig. 5) show best correspondence in years where the calibra-
tion was not only most focused (1994, 2005) but also quite well in the
full corroboration data set. The vertical trends in DO are captured well.
Comparison with vertically averaged zooplankton (Fig. 6) was only
possible for 2005. The temporal trends in DRP are difficult to delineate
because those data are only available for the late summer in most
(Zhou et al., 2013). The shaded region representsmodel output 7-dayminimum andmax-
dard deviation of the individual cruise estimates. Dark black line and bars representmodel

a response to nutrient loads and physical variability, J Great Lakes Res
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Table 3
Recent published primary production rates in Lake Erie for comparison with model
estimates.

Reference Minimum production
(mgC·m−3·day−1)

Maximum production
(mgC·m−3·day−1)

Ostrom et al. (2005a) 11.5 395.5
Ostrom et al. (2005b) 76.8 230.4
Depew et al. (2006) 37.0 85.1
Smith et al. (2005) 50.2 81.9
Model estimates 18.7 92.7
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years. However, as expected the values reach very low concentrations
coinciding with increased phytoplankton and zooplankton abundance.

As another corroboration test, we used model output from the
layers located within the daily evolving hypolimnion, and a relation-
ship between bottom water dissolved DO and hypoxic area (A =
9.3exp(−DO2 ∕ 7.09)) developed by Zhou et al. (2013) to compare
modeled areal extent to those estimated from a geostatistical analysis
of the observations (Zhou et al., 2013). It is important to note that
hypoxic area derived from geostatistical analysis of observations from
individual cruises (Zhou et al., 2013) varies considerably within a year,
even when cruises were only a few weeks apart (Fig. 7). Yet, the
model captures that intra-annual variability, expressed as theminimum
and maximum 7-day averages for each summer, and a comparison
between modeled and observed summer hypoxic area, averaged over
the timeframe of the observations in each year, shows that the model
also captures the inter-annual dynamics of this key management-
focused metric.

While the model is relatively simple, containing only six state
variables, there are over thirty parameters that can be adjusted during
calibration. The vast majority of these parameter values are within
ranges used in similar models of large lakes, from the literature,
and from the EPA model guidelines (Table 2). However, in such
under-determined models (Anderson, 2005; Friedrichs et al., 2006), it
is possible to match state variable observations with more than one
set of rate coefficients, such that over-estimation of one rate process is
compensated by under-estimation of another. For this reason and to
further confirm model performance, we also compared the calibrated
model results to sedimentation, primary production, and oxygen
depletion rates. The June–September mean primary production rates
calculated by the model (18.7–92.7 mgC·m−3·day−1) are within
the range of values measured during the growing season (Table 3).
There are fewer published measurements of sedimentation rates
Fig. 8. Comparison of water column depletion rates from Rucinski et al. (2010) (open diamonds
model described here (solid circles).
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in Lake Erie, particularly in recent decades. However, the model
average of 1.59 g(dw) m−2 day−1 is consistent within the 0.2–
71.2 g(dw) m−2 day−1 range measured in Lake Erie by Charlton and
Lean (1987) and the 1.47–2.2 g(dw)m−2 day−1 rangemeasured in off-
shore LakeOntario by Rosa (1985).Modeled hypolimnetic dissolved ox-
ygen depletion rates are also comparable to those estimated by
the much simpler models (Rucinski et al., 2010), by regression of
hypolimnetic averaged concentrations (Fig. 8), and by Burns et al.
(2005) and Rosa and Burns (1987).

Overall, the calibration, corroboration, and confirmation tests
outlined above (as well as the additional tests to data outside the
calibration set described below) provide sufficient confidence in the
model's ability to reproduce hypoxia dynamics on seasonal and inter-
annual scales.

In an earlier analysis that aggregated all oxygen consumption into
water column and sediment demands, Rucinski et al. (2010) found
that SOD represented on average 63% of the total hypolimnetic oxygen
demand. In the present model, SOD also represents a substantial
fraction of the overall demand. For example, in a simple model test of
removing all external phosphorus load, it still required a 67% reduction
of SOD to eliminate hypoxia.

Because SOD is dependent upon settled organic matter, primarily
from phytoplankton production driven by nutrient loads, it is logical
to assume that reduced loads would eventually lead to reduced SOD
(Smith and Matisoff (2008). So, we needed estimates of SOD changes
in response to projected changes in phosphorus loads. To account for
this, we relied first on a relationship developed by Borsuk et al. (2001)
between SOD and carbon deposition:

SOD ¼ a
Lc

1þ kLch

� �b

where Lc is deposited organic carbon, h is the thickness of the hypolim-
nion, and a, b, and k are the model coefficients. Although their study
focused mostly on large estuaries, we were able to calculate values for
a, b, and k via a least-squares regression such that the equation
reproduced the average observed SOD for rates of organic carbon depo-
sition simulated by the eutrophication model across the range of loads
from the 19-year data set (Fig. 9). This provides a reasonable represen-
tation of the relationship between carbon sedimentation and SOD.
However, to adjust SOD in our load-reduction scenarios, we need to
know how SOD would vary with nutrient load. To address this, we ran
the current model over a wide range of loads to generate a relationship
), linear regression (black diamonds; standard error shown in vertical error bars), and the
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Fig. 9. Comparison ofmodel calculated SOD (sediment oxygen demand) and sampled estuaries in Borsuk et al. (2001). Average of published Lake Erie SOD values is shown as dashed line.
Solid line shows the obtained function relating SOD to deposited carbon. Solid circles show the values published in Borsuk et al. (2001).
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between load and carbon deposition and then, by way of the modified
Borsuk equation, created a TP–SOD relationship (Fig. 10):

SOD ¼ SODmax TPload

KSOD þ TPload

� �

where SODmax is the maximum sediment oxygen demand, TPload is the
annual total phosphorus load, and KSOD represents a half-saturation
constant. This approximation assumes that SOD reaches a new steady
state with nutrient loading. The values for SODmax and KSOD, obtained
by regression, are 0.98 g m−2 day−1 and 3847 tons/year, respectively.
With this ability to adjust SOD based on loads, the model was used to
investigate the response of several water quality metrics as a function
of load and inter-annual variability in physical drivers.

To explore the system's response to altered loads and inter-annual
variability in physical drivers, response curves were generated by
scaling the 1997 seasonal load time-series by factors ranging between
Fig. 10. Relationship between annual total phosphorus load and model calculated SOD. Mo
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0.1 and 2.0 and running the model with temperature and mixing
patterns from each of the 19 years to generate response envelopes
represented by the mean and standard deviation of the 19 cases. In
each of these load scaling runs, we applied the same state variable initial
conditions, representing observations from 1997. This approach allows
development of response curves for the central tendency in hypoxic
response and also emphasizes that the meteorological conditions in a
given year can produce substantial deviation from that mean. So,
while we can estimate the projected impact of a load reduction on
average, the actual hypoxia metric might deviate substantially in any
given year. The 1997 seasonal loading time series was used as the
base case because it resulted in a steady state SOD equal to the observed
rates and it represented loads and hypoxic extent typical of the recent
era.

To compare the impacts of inter-annual variability in hydrometeo-
rology with inter-annual variability in the seasonality of the loads, we
ran the model with all 19 sets of actual seasonal loads for each of the
del estimated values shown as open diamonds. Regression curve shown as solid line.
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Table 4
Results of ANOVA testing the relative influence of interannual variability in hydrometeo-
rology and load seasonality.

ANOVA

Source of variation SS df MS F P-value F crit

Thermal regime 943.7686 18 52.43159 1753.322 0 1.635776
Seasonality 172.2021 18 9.566782 319.915 0 1.635776
Error 9.688943 324 0.029904
Total 1125.66 360
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19 hydrometeorological conditions and used two-way ANOVA without
replication to explore the relative contributions to overall variance. The
results showed that variability in hydrothermal regime contributes 5
times more variance than does load seasonality (Table 4).

Response curves were generated for hypoxic area, hypoxic days,
oxygen depletion rate, and bottom DO concentration as a function of
annual TP load (Fig. 11) and DRP load (Fig. 12). It should be noted that
the loads used in these curves represent total western and central
basin loads, representing roughly 90% and 92% of the total TP and DRP
loads, respectively. Eastern basin loads are assumed to not influence
the central basin significantly. Observedmeans and standard deviations
of these metrics, where available, are also plotted along with the model
response to illustrate the model's ability to represent the general rela-
tionships, given the inherent variability in the observations, as well as
capture the variability associated with inter-annual meteorology.

In afinalmodel evaluation test, we also include (Fig. 11) observations
from years considerably outside of the loading range in the 1987–2005
calibration/corroboration dataset. It shows the model's ability to
Fig. 11. Response of hypoxic area, hypoxic days, oxygen depletion rate, and bottom layer dissol
± st. dev. of cases representing hydrometeorology from the years 1987–2005. Symbols and erro
sets. Open circle symbols are for years outside the 1987–2005 series.
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capture most of those observations, including those with much higher
loads from the 1960s and 1970s. This evaluation represents a more
rigorous confirmation of the model beyond the corroboration using
the 1987–2005 dataset, when P loads did not vary as much.

The response envelopes in Figs. 11 and 12 represent the influence of
inter-annual variation in meteorology which can also be seen in the
relationship between hypoxic area as a function of the average summer
depth to the top of the hypolimnion (Fig. 13) where the error bars
represent ±1 standard deviation for runs with the 19 different loads.
These results are consistent with those of Lam et al. (1987), who
showed that both loads and hydrothermal conditions contributed to
hypoxic response from an earlier time period (1967–1982).

Discussion

This 1-dimensional linked hydrodynamic and eutrophication model
was developed and corroborated to observations from 1987 to 2005,
and verified with observations from the 1960s and 1970s. The model
effectively captures both vertical and temporal trends in DO, as well as
temporal trends in CHL, phosphorus, and zooplankton biomass and
several key internal process rates. By incorporating a relationship
between external load and SOD, the load–response curve envelopes,
accounting for inter-annual variability in meteorological conditions,
provide a valuable tool to reassess loading targets to Lake Erie with
the goal of reducing hypoxia.

This analysis can be used to draw some management implications.
By inspection of Fig. 11, it is clear that the western basin (WB) and cen-
tral basin (CB) TP loads would have to be approximately 4300 MT/year
(4804 MT/year total) to even reduce the hypoxic area to 2000 km2,
which is substantially lower than the current total load target of
ved oxygen as a function of western and central basin TP loads. Curves represent the mean
r bars aremeans and st. dev. of observations. Solid diamonds represent the 1987–2005 data
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Fig. 12. Response of hypoxic area, hypoxic days, oxygen depletion rate, and bottom layer dissolved oxygen as a function ofwestern and central basinDRP loads. Curves represent themean
± st. dev. of cases representing hydrometeorology from the years 1987–2005. Symbols and error bars are means and st.dev. of observations. Solid diamonds represent 1987–2005 data
sets.
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11,000 MT. This is a 46% reduction from the 2003–2011 average loads
and 56% below the current target. If a new target was developed for
DRP (Fig. 12), achieving that hypoxic area would require a DRP load
reduction to 550 MT/year (equivalent total load of 598 MT/year), a
value roughly equivalent to values in the early 1990s. Because there
has been such a significant increase in the DRP load since then, this rep-
resents a very substantial 78% reduction from the 2005–2011 average
DRP load. It is important to note that these projections not only provide
the central tendency in hypoxic response, but also include response
envelopes that represent variation due to changes in meteorological
conditions. That is, while it provides a hypoxia estimate based on a
Fig. 13. Response of hypoxic area as a function of summer-average depth to the hypolimnion. S
±standard deviation of runs with loads from the 19 scenarios.
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given load thatwould be expected on average, the actual hypoxiametric
might deviate substantially in any given year.

It is also interesting to note that recent recommendations to reduce
the occurrence of western basin cyanobacteria blooms may not be
sufficient to significantly reduce central basin hypoxia. For example,
the Ohio Lake Erie Phosphorus Task Force recommended that to keep
blooms to acceptable levels, the March–June Maumee River TP loads
(as a surrogate for all WB tributaries) should be less than 800 MT
(Ohio EPA, 2013), which is a 31% reduction from the 2005–2011 aver-
age of 1160 MT (Richards, pers. com). If all western and central basin
non-point sources were reduced by the same 31% and applied across
ummer mean hypoxic area is shown in solid triangles and the uncertainty bars represent
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the full year, the resulting annual TP loadwould be reduced to 6273 MT/
year, still considerably higher than the 4300 MT/year target identified
above. So, in setting targets, it is important to recognize that western
basin cyanobacteria and central basin hypoxia endpoints likely require
separate considerations.

This analysis demonstrated the importance of both phosphorus
loading and hydrometeorological stressors on hypoxia in the Central
Basin of Lake Erie. Further, it demonstrated that inter-annual variability
in the development and duration of summer thermal stratification
could produce considerable variability in the hypoxic response for a
given phosphorus load. Nevertheless, the findings for the relationship
between hypoxic zone area and phosphorus loading has provided an
excellent load reduction target to begin an adaptive management
process aimed at minimizing the hypoxic zone to the greatest extent
possible. To be sure, the model could be made more complex by adding
processes (e.g., multiple phytoplankton functional groups, nitrification,
and sediment diagenesis) and increasing dimensionality; however,
those types of refinements should await the observation of the system
response to the recommended phosphorus load reduction. Future
work should investigate the potential effects of climate change on the
response curves produced from this analysis.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jglr.2014.02.003.
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