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Abstract— Adaptive sampling theory has shown that, with
proper assumptions on the signal class, algorithms exist to
reconstruct a signal in Rd with an optimal number of samples.
We generalize this problem to when the cost of sampling is
not only the number of samples but also the distance traveled
between samples. This is motivated by our work studying
regions of low oxygen concentration in the Great Lakes. We
show that for one-dimensional threshold classifiers, a tradeoff
between number of samples and distance traveled can be
achieved using a generalization of binary search, which we refer
to as quantile search. We derive the expected total sampling
time for noiseless measurements and the expected number of
samples for an extension to the noisy case. We illustrate our
results in simulations relevant to our sampling application.

I. INTRODUCTION

In many signal reconstruction problems, the cost associ-
ated with taking a sample is in some way dependent on the
distance between samples. For example, consider sampling
the Great Lakes with a small autonomous watercraft in order
to reconstruct a spatial signal. Lakes such as Lake Erie span
an area on the order of thousands of kilometers; hence the
time it takes for the boat to reach the next sample location
is a major part of the sampling cost.

In the traditional or passive sampling scenario, the sample
locations (or sample times) are chosen a priori, often on a
uniform grid. Contrasting this is the field of active sampling
or active learning wherein sample locations may be chosen
as a function of all previous locations and their corresponding
measurements. Active learning theory has shown that binary
search guarantees optimal sampling rates [1], but this theory
ignores any sampling cost other than the number of samples
taken. Our problem of interest is one in spatial sampling
where the spatial region of interest is relatively large, and
the total sampling time is a function of both the number of
samples required and the distance traveled throughout the
sampling procedure.

Our contribution is an algorithm, termed quantile search,
that provides a tradeoff between the number of samples
required and the distance traveled in finding the change point
of a one-dimensional threshold classifier. At its two extremes,
quantile search minimizes either the number of samples or
the distance traveled, with a tradeoff achieved by varying a
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Fig. 1: Dissolved oxygen concentrations in Lake Erie. Points
represent sample locations and solid black lines delineate the
central basin. Source: http://www.glerl.noaa.gov/res/waterQuality/

search parameter. We derive and analyze this algorithm in
the noise-free and noisy cases and study it in simulations
with an application to environmental monitoring, the study
of oxygen levels in the Great Lakes. The reconstruction of
this signal is of interest to water quality experts in order to
ensure the balance and quality of water in this region [2]; we
show an estimate interpolated from historical measurements
in Figure 1.

Where as binary search takes samples at the bisection of
a probability distribution, or the 2-quantile, quantile search
instead samples at the first m-quantile. For a preview of our
results, suppose that we wish to estimate a threshold θ on a
one dimensional interval. For noiseless samples, our results
show that the expected estimation error after n measurements
is

E[|θ̂n − θ|] =
1

4

((
1− 1

m

)2

+

(
1

m

)2
)n

, (1)

which generalizes to binary search E[|θ̂n − θ|] = 2−(n+2).
The expected distance traveled is

E[D] =
m

2m− 2
, (2)

which also generalizes to binary search where E[D] = 1.
Therefore, larger values of m allow for a tradeoff between
number of samples and distance traveled.

The remainder of this paper is organized as follows. In
Section II, we motivate and formulate the problem of interest.
In Section III we place this work into the context of the
current literature on active learning. Section IV describes



the quantile search algorithm for both the noise-free and
noisy cases. In Section V we verify the theory presented via
simulation and apply the algorithms described to a problem
of interest. Conclusions and directions of future research are
given in Section VI.

II. MOTIVATION AND PROBLEM FORMULATION

The problem of interest for this work is the initial moti-
vating problem described in the Introduction, where we wish
to determine hypoxic regions in the Great Lakes. The spatial
extent of low oxygen concentration or hypoxia is a strong
indicator of the health of the lakes [3]. Studies performed
by the National Oceanic and Atmospheric Administration on
Lake Erie utilize a number of measurement stations on the
order of tens, as well as hydrodynamic models, in order to
provide a warning system for severe hypoxia in the central
basin. We wish to determine the spatial extent of the hypoxic
region in the central basin of Lake Erie, a phenomenon
that occurs yearly in the late summer months. A region is
deemed hypoxic if the dissolved oxygen concentration is less
than 0.2 ppm [3]. Further, we assume the hypoxic zone is
one connected region with a smooth boundary. The problem
can then be considered a binary classification problem, with
spatial points receiving a label 0 if they are hypoxic and 1
otherwise, where the desired spatial extent corresponds to
the Bayes decision boundary.

To perform sampling, an autonomous watercraft with a
speed ranging from 0.5-4 m/s will be used. Further, since the
maximum spatial extent may occur at one of many depths,
a depth profile must be taken at each point, increasing the
time per sample significantly. Finally, the hypoxic zone can
only be considered approximately stationary for a period of
time less than one week. We therefore seek to estimate the
decision boundary while simultaneously minimizing the total
time spent sampling.

Following [4], we split our problem into several one
dimensional intervals, a process that is described further in
Section V. In each interval we must find a threshold beyond
which the lake is hypoxic. Define the step function class

F = {f : [0, 1]→ R|f(x) = 1[0,θ)(x)}
where θ ∈ [0, 1] is the change point and 1S(x) denotes the
indicator function which is 1 on the set S and 0 elsewhere. In
contrast to the active learning scenario, our goal is to estimate
θ while minimizing the total time required for sampling,
a function of both the number of samples taken and the
distance traveled during sampling. Denote the observations
{Yi}ni=1 ∈ {0, 1}n as samples of an unknown function fθ ∈
F taken at sample locations on the unit interval {Xi}ni=1.
With probability p, 0 ≤ p < 1/2, we observe an erroneous
measurement. Thus

Yi =

{
fθ(Xi) with probability 1− p
1− fθ(Xi) with probability p

= f(Xi)⊕ Ui,

where ⊕ denotes summation modulo 2, and Ui ∈ {0, 1} are
Bernoulli random variables with parameter p. While other
noise scenarios are common, here we assume the Ui are
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Fig. 2: Threshold classifier in one dimension with change
point θ = 1

3 .

independent and identically distributed and independent of
{Xi}. This noise scenario is of interest as the motivating data
(hypoxia) is a thresholded value in {0, 1}, where Gaussian
noise results in improper thresholding of the measurements.
The extension to nonuniform noise (e.g., a Tsybakov-like
noise condition as studied in [17]) remains as a topic for
future work.

See Figure 2 for an illustration of fθ(X). As stated
previously, our goal is to estimate θ using as little time
as possible. To this end, the sample location at step n is
chosen as a function of all previous sample locations and
measurements as well as the noise.

III. RELATED WORK

A number of active learning algorithms exist to estimate
θ while minimizing the number of samples taken. Binary
search or binary bisection has been studied on this problem
and on many other active learning problems. Consider binary
bisection applied to the signal in Figure 2, where θ = 1/3.
Initially, the hypothesis space is the unit interval. The binary
bisection algorithm takes its first measurement at X1 = 1/2,
measuring Y1 = 0, indicating that θ lies to the left of
1/2, and thus reducing the hypothesis space to the interval
[0, 1/2]. Continuing in this manner, the algorithm reduces the
hypothesis space by half after each measurement, achieving
what has been shown to be an optimal rate of convergence
[1]. In fact, compared to its passive counterpart (in this
case, sample locations distributed uniformly throughout the
interval), binary bisection has been shown to achieve an
exponential speedup [1], [5]. A large body of work has
answered questions such as what type of improvement is
attainable in higher dimensions [5], [6], for more complex
decision boundaries and under measurement noise [4], [7]–
[9], and whether algorithms exist that achieve such improve-
ments [10]–[13].

Extensions of the binary bisection algorithm continue to be
an important topic of research in active learning and related
fields. In [14], the author presents a modified version of
binary search that can handle noisy measurements, referred
to as probabilistic binary search (PBS). A discretized version
of this algorithm was presented in [7] and analyzed, yielding



an upper bound on the expected rate of convergence of the
algorithm. This discretized algorithm, referred to as the B-
Z algorithm after its authors, has been analyzed from an
information-theoretic perspective [15], [16], as well as under
Tsybakov’s noise condition [17]. Further, in [17], the authors
show that for the boundary fragment class in dimension
d ≥ 2, the B-Z algorithm can be used to perform a series
of one-dimensional searches, achieving an optimal rate of
convergence up to a logarithmic factor. The algorithm has
also been used more recently in [18] to demonstrate the
relationship between active learning and stochastic convex
optimization.

As we noted before, however, binary search travels on
average the entire length of the interval under consideration
in order to estimate the threshold. In the case of Lake Erie,
one interval corresponds to approximately 58 km, making
the use of binary search undesirable.

A number of active learning algorithms exist aside from
binary search, many of which have been shown to be optimal
under various boundary and noise conditions [4], [6], [8],
[10]–[13]. The work of [6], [10]–[13] presents active linear
classifiers that are increasingly adaptive to noise conditions
and computationally feasible. In [13], the authors present
an algorithm that makes use of empirical risk minimization
of convex losses. Another approach relies on the use of
recursive dyadic partitions (RDPs) [19], in which the d-
dimensional unit hypercube is recursively divided into 2d

equal sized hypercubes, forming a tree that is then pruned
to give rise to an optimal estimator. An active learning algo-
rithm based on this idea is shown to be nearly optimal in [8],
and this algorithm is used in a lake sampling context in [9].
While these algorithms provide optimal sample rates, they
both begin by sampling uniformly at random throughout the
entire feature space. This would require traversing the entire
lake before proceeding to locations where the boundary is
likely to lie, rendering these algorithms infeasible.

A small amount of literature exists in which the cost of
sampling is generalized beyond the number of samples [20]–
[22]. The problems considered in [20], [21] are similar to the
setting here, in that the distance traveled to obtain samples
is taken into account. In [20], the authors employ a trav-
eling salesman with profits model to minimize the distance
traveled while obtaining labels for points of maximum un-
certainty. The authors of [21] minimize an objective function
that takes into account both label uncertainty and label cost.
In both cases, the samples are taken batch-wise before being
labeled by a human expert. As every individual sample is
informative, we wish to take advantage of all available data
by choosing our sample locations on a sample-by-sample
basis, rather than updating after each batch. Further, neither
algorithm is accompanied by theoretical analysis. In [22], the
authors investigate performance bounds for active learning
in the case where label costs are nonuniform. The quantile
search algorithms presented here extend this idea to the case
where label costs are both nonuniform and dynamic.

As a final note, one may wonder about the relation to
what is known as m-ary search [24]. In contrast to quantile

search, m-ary search is tree-based and thus requires integer
values of m. In contrast, quantile search does not require m
to be an integer and therefore gives more flexibility in the
resulting tradeoff. Further, quantile search as described is the
natural generalization of PBS and lends itself to the analysis
of [4], [7] in the case where the measurements are noisy. A
comparison to noisy m-ary search is a topic for future work.

IV. QUANTILE SEARCH

In this section, we extend the ideas of [4], [7] to account
for a distance penalization in addition to sample complexity,
resulting in what we refer to as quantile search. The basic
idea behind this algorithm is as follows. We wish to find
a tradeoff between the number of samples required and the
total distance traveled to achieve a given estimation error for
the change point of a step function on the unit interval. As
we know, binary bisection minimizes the number of required
samples. On the other hand, continuous spatial sampling min-
imizes the required distance to estimate the threshold. Binary
search bisects the feasible interval (hypothesis space) at each
step. In contrast, one can think of continuous sampling as
dividing the feasible interval into infinitesimal subintervals
at each step. With this in mind, a tradeoff becomes clear:
one can divide the feasible interval into subintervals of size
1/m, where m ranges between 2 and∞. Intuition would tell
us that increasing m would increase the number of samples
required but decrease the distance traveled in sampling. In
what follows, we show that this intuition is correct in both
the noise-free and noisy cases, resulting in two novel search
algorithms.

A. Deterministic Quantile Search

We first describe and analyze quantile search in the noise-
free case (p = 0), here referred to as deterministic quantile
search (DQS) and given as Algorithm 1. In the following
subsections, we analyze the expected sample complexity
and distance traveled for the algorithm and show how these
results can be used to minimize the total sampling time.
Further, the results show that the required number of samples
increases monotonically with m and the distance traveled
decreases monotonically with m, indicating that the desired
tradeoff is achieved.

1) Rate of Convergence: Recalling from Section II, our
goal is to estimate the threshold θ of a one-dimensional
threshold classifier. We analyze the expected error of our
estimate θ̂n after a fixed number of samples for the DQS
algorithm. The main result and a sketch of the proof are
provided here. An expanded proof can be found in [23].

Theorem 1: Consider a deterministic quantile search with
parameter m and let ρ = m−1

m . Begin with a uniform prior
on θ. The expected estimation error after n measurements is
then

E[|θ̂n − θ|] =
1

4

[
ρ2 + (1− ρ)2

]n
. (3)

Proof: (Sketch) The proof proceeds from the law of
total expectation. Let Zn = |θ̂n−θ|. The first measurement is



Algorithm 1 Deterministic Quantile Search (DQS)

1: input search parameter m, sample budget N
2: initialize X0 ← 0, Y0 ← 1, n← 1, a← 0, b← 1
3: while n ≤ N do
4: if Yn−1 = 1 then
5: Xn ← Xn−1 + 1

m (b− a)
6: else
7: Xn ← Xn−1 − 1

m (b− a)
8: end if
9: Yn ← f(Xn)

10: a = max {Xi : Yi = 1, i ≤ n}
11: b = min {Xi : Yi = 0, i ≤ n}
12: θ̂n ← a+b

2
13: end while

taken at 1/m, and hence the expected error can be calculated
when θ ≤ 1/m and θ > 1/m.

E[Z1] = E
[
Z1|θ ≤

1

m

]
Pr

(
θ ≤ 1

m

)
+

E
[
Z1|θ >

1

m

]
Pr

(
θ >

1

m

)
=

1

4

[
(1− ρ)2 + ρ2

]
.

Similarly, after the second measurement is taken, there are
four intervals, two that partition the interval [0, 1/m], and
two that partition (1/m, 1]. These intervals contribute four
monomials of degree 4 to the error, one of which is (1−ρ)4,
one which is ρ4, and two which are (1 − ρ)2ρ2. The basic
idea is that each “parent” interval integrates to (1− ρ)2iρ2j

and in the next step gives birth to two “child” intervals, one
evaluating to (1 − ρ)2i+2ρ2j and the other (1 − ρ)2iρ2j+2.
The proof of the theorem then follows by induction.

Consider the result of Theorem 1 when m = 2. In this
case, the error becomes E[|θ̂n − θ|] = 2−(n+2). Comparing
to the worst case, we see that the average case sample
complexity is exactly one sample better than the worst
case, matching the well-known theory of binary search. In
Section V we confirm this result through simulation.

2) Distance Traveled: Next, we analyze the expected
distance traveled by the DQS algorithm in order to converge
to the true θ. The proof is similar to that of the previous
section in that it follows by the law of total expectation.
After each sample, we analyze the expected distance given
that the true θ lies in a given interval. The result and a proof
sketch are given below, with the full proof included in [23].

Theorem 2: Let D denote a random variable representing
the distance traveled during a deterministic quantile search
with parameter m. Begin with a uniform prior on θ. Then

E[D] =
m

2m− 2
. (4)

Proof: (Sketch) The DQS algorithm for our class of
functions chooses samples moving further into the interval
until it makes a zero measurement. It then turns back and
takes samples in the opposite direction until a one is mea-
sured. This behavior allows us to analyze the total distance

by splitting it up into stages—first the expected distance
traveled before the algorithm reaches a point x1 > θ, and
then x2 < θ, etc. Let Dn be a random variable denoting the
distance required to move to the right of θ for the

⌈
n
2

⌉
th

time when n is odd, and to the left of θ for the n
2 th time

when n is even. In this case, we have that

E[D] =

∞∑
n=1

E[Dn].

First, we would like to find E[D1]. Let Ai denote the in-
terval

[
1
m

∑i−1
p=0

(
m−1
m

)p
, 1
m

∑i
p=0

(
m−1
m

)p)
, where A0 =[

0, 1
m

)
, so that the Ai’s form a partition of the unit interval

whose endpoints are possible values of the sample locations
Xj . Now note that

E[D1] =

∞∑
i=0

E[D1|θ ∈ Ai] Pr(θ ∈ Ai).

Then since we assume θ is distributed uniformly over the
unit interval,

Pr(θ ∈ Ai) =
1

m

i∑
p=0

(
m− 1

m

)p
− 1

m

i−1∑
p=0

(
m− 1

m

)p
=

1

m

(
m− 1

m

)i
.

Next, note that

E[D1|θ ∈ Ai] =
1

m

i∑
p=0

(
m− 1

m

)p
Thus we have

E[D1] =

∞∑
i=0

E[D1|θ ∈ Ai] Pr(θ ∈ Ai)

=
m

2m− 1
.

The proof proceeds by rewriting the above in terms of ρ =
(m − 1)/m and then calculating E[Dn]. This is done by
dividing each Ai into subintervals that form partitions of
Ai. The result then follows by induction on E[Dn].

3) Sampling Time: Given the results in Theorems 1 and 2,
we can now choose the optimal value of m to minimize the
expected sampling time. First, let N be a random variable
denoting the number of samples required to achieve an error
ε and denote its expectation

E[N ] =
log(4ε)

log
((

m−1
m

)2
+ 1

m2

) ≡ n′,
which is found by solving (3) for n. Now let T be a random
variable denoting the total time required to achieve an error
ε. Then the expected value is

E[T ] = γE[N ] + ηE[D]

= γn′ + η

(
m

2m− 2
− 1

(2m− 2)(2m− 1)n′

)
≈ γn′ + η

m

2m− 2
, (5)



Algorithm 2 Probabilistic Quantile Search (PQS)

1: input search parameter m, sample budget N , probability
of error p

2: initialize π0(x) = 1 for all x ∈ [0, 1], n← 0
3: while n ≤ N do
4: choose Xn+1 such that

∫Xn+1

0
πn(x)dx = 1

m
5: observe Yn+1 ← f(Xn+1) ⊕ Un+1, where Un+1 ∼

Bern(p)
6: if Yn+1 = 0 then
7:

πn+1(x) =

(1− p)
(

m
1+(m−2)p

)
πn(x), x ≤ Xn+1

p
(

m
1+(m−2)p

)
πn(x), x > Xn+1

8: else
9:

πn+1(x) =

p
(

m
1+(m−2)p

)
πn(x), x ≤ Xn+1

(1− p)
(

m
1+(m−2)p

)
πn(x), x > Xn+1

10: end if
11: end while
12: estimate θ̂n such that

∫ θ̂n
0
πn(x) = 1/2

where γ denotes the time required to take one sample, and
η denotes the time required to travel one unit of distance.
Finding the optimal m is difficult. However, (5) can be used
to solve for m numerically using standard techniques. We
show examples of such values in Section V.

B. Probabilistic Quantile Search

We now extend the idea behind Section IV-A to the
case where measurements may be noisy (i.e., p ≥ 0).
In [7], the authors present the probabilistic binary search
(PBS) algorithm. The basic idea behind this algorithm is to
perform Bayesian updating in order to maintain a posterior
distribution on θ given the measurements and locations.
Rather than bisecting the interval, at each step the algorithm
bisects the posterior distribution. This process is then iterated
until convergence and has been shown to achieve optimal
sample complexity [16], [17]. We now extend this idea to
achieve a tradeoff between sample complexity and distance
traveled.

We refer to the noise-tolerant algorithm as probabilistic
quantile search (PQS), which proceeds as follows. Starting
with a uniform prior, the first sample is taken at X1 = 1/m.
The posterior density πn(x) is then updated as described
below, and θ̂n is chosen as the median of this distribution.
The algorithm proceeds by taking samples Xn such that∫ Xn+1

0

πn(x)dx =
1

m
,

i.e., Xn is the first m-quantile of πn−1. For m = 2, the above
denotes the median of the posterior distribution and reduces
to PBS. A formal description is given in Algorithm 2.

The Bayesian update on πn can be derived as follows.
Begin with the first sample. We have π0(x) = 1 for all x
and wish to find π1(x). Let f1(x|X1, Y1) be the conditional
density of θ given X1, Y1. Applying Bayes rule, the posterior
becomes:

f1(x|X1, Y1) =
Pr(X1, Y1|θ = x)π0(x)

Pr(X1, Y1)

For illustration, consider the case where θ = 0. We now take
the first measurement at X1 = 1/m. Then

Pr (X1 = 1/m, Y1 = 0|θ = 0) = 1− p
and

Pr (X1 = 1/m, Y1 = 1|θ = 0) = p.

In fact, this holds for any θ < 1/m. Now examine the
denominator:

Pr(X1 = 1/m, Y1 = 0) =
1 + (m− 2)p

m
.

Notice that for m = 2 this simplifies to 1/2, which is the
case in [7]. We then update the posterior distribution to be

π1(x) =

(1− p)
(

m
1+(m−2)p

)
x ≤ 1/m

p
(

m
1+(m−2)p

)
x > 1/m.

The equivalent posterior density can be found for when
Y1 = 1. The process of making an observation and updating
the prior is then repeated, yielding general formula for the
posterior update. When Yn+1 = 0, we have

πn+1(x) =

(1− p)
(

m
1+(m−2)p

)
πn(x) x ≤ 1/m

p
(

m
1+(m−2)p

)
πn(x) x > 1/m.

Similarly, for Yn+1 = 1, we have

πn+1(x) =

p
(

m
1+(m−2)p

)
πn(x) x ≤ 1/m

(1− p)
(

m
1+(m−2)p

)
πn(x) x > 1/m.

1) Rate of Convergence: Analysis of the above algorithm
has proven difficult since its inception in 1974, with a first
proof of a geometric rate of convergence appearing only
recently in [25]. Instead, the authors of [4], [7], [16], [17] use
a discretized version involving minor modifications. In this
case, the unit interval is divided into bins of size ∆, such that
∆−1 ∈ N. The posterior distribution is parameterized, and a
parameter α is used instead of p in the Bayesian update,
where 0 < p < α. The analysis of rate of convergence
then centers around the increasing probability that at least
half of the mass of πn(x) lies in the correct bin. A formal
description of the algorithm can be found in [23].

Given a version of PQS discretized in the same way, we
arrive at the following result.

Theorem 3: Under the assumptions given in Section II,
the discretized PQS algorithm satisfies

sup
θ∈[0,1]

E[|θ̂n − θ|] ≤ 2

(
m− 1

m
+

2
√
p(1− p)
m

)n/2
. (6)



Proof: (Sketch) In the discretized algorithm, ai(j)
denotes the posterior mass at the ith bin after j measurements
and a(j) denotes the vectorized collection of all bins after j
measurements. Let k(θ) be the index of the bin containing
θ. Note that ai(0) = ∆ for all i. We define

Mθ(j) =
1− ak(θ)(j)
ak(θ)(j)

,

and

Nθ(j + 1) =
Mθ(j + 1)

Mθ(j)
=

ak(θ)(j)(1− ak(θ)(j + 1)

ak(θ)(j + 1)(1− ak(θ)(j))
.

As a brief bit of intuition, note that Mθ(j) is a measure
of how much mass is in the bin actually containing θ,
while Nθ(j + 1) is a measure of improvement from one
iteration to the next and is strictly less than one when
an improvement is made [4]. From [4] and following a
straightforward application of Markov’s inequality and the
law of total expectation, we have that

Pr
(
|θ̂n − θ|> ∆

)
≤ E[Mθ(n)], (7)

and

E[Mθ(n)] ≤Mθ(0)

{
max

j∈0,...,n−1
max
a(j)

E[Nθ(j + 1)|a(j)]

}n
.

The remainder of the proof consists of bounding E[Nθ(j +
1)|a(j)] by considering the three cases: (i) k(j) = k(θ); (ii)
k(j) > k(θ); and (iii) k(j) < k(θ). In all cases, we show
that

E[Nθ(j+1)|a(j)] ≤ q

2β
+
p

2α
+

(
q

2β
− p

2α

)
(β−α)

(
m− 2

m

)
,

where q = 1− p and β = 1− α. Using (7), we have

Pr
(
|θ̂n − θ|> ∆

)
≤ 1−∆

∆

[
q

2β
+

p

2α
+

(
q

2β
− p

2α

)
×

(β − α)

(
m− 2

m

)]n
.

Next, we bound the expected error

E[|θ̂n − θ|] =

∫ ∞
0

Pr
(
|θ̂n − θ|> t

)
dt

≤ ∆ +
(1−∆)2

∆

[
q

2β
+

p

2α

+

(
q

2β
− p

2α

)
(β − α)

(
m− 2

m

)]n
,

and the result follows by minimizing with respect to ∆ and
α.

The full proof can be found in [23]. In the case where m =
2, the above result matches that of [4], [7] as desired. One
important fact to note is that in contrast to the deterministic
case, the result here is an upper bound on the number of
samples required for convergence as opposed to an expected
value. As this seems to be the case for all analyses of similar
algorithms [4], [7], [25], we instead rely on Monte Carlo
simulations to choose the optimal value of m. Finally, the

bound here is loose. For clarity, consider the case where
p = 0 and m = 2. Then the above becomes

sup
θ∈[0,1]

E[|θ̂n − θ|] ≤ 2

(
1

2

)n/2
.

As noted in [17] and mentioned in Section IV-A,

sup
θ∈[0,1]

E[|θ̂n − θ|] ≤
(

1

2

)n+1

,

indicating that the bound is quite loose, even for the pre-
viously considered PBS algorithm. However, in [17], the
authors use this result when m = 2 to show rate optimality
of the PBS algorithm. This fact suggests that despite the
discrepancy, the result of Theorem 3 may still be useful in
proving optimality for the PQS algorithm.

While the rate of convergence for PQS can be derived
using standard techniques, the expected distance or a useful
bound on the distance is more difficult. The technique used
in Section IV-A becomes intractable as the values of Xi

are no longer deterministic given θ. We have considered
the approach of examining the posterior distribution after
each step and calculating the possible locations, but at
the nth measurement, there are 2n−1 possible distributions.
Determining the expected distance traveled by PQS remains
a subject of future work.

V. SIMULATIONS

A. Verification of Algorithms

In this section, we verify through simulation the theoretical
rate of convergence and distance traveled derived in Sec-
tion IV-A. Further, we present simulated results for the PQS
algorithm and compare with the bound derived in Section IV-
B.

We first simulate the the DQS algorithm over a range
of m from 2 to 20, where θ is swept over a 1000-point
grid on the unit interval. The resulting average error after
20 samples is shown in Fig. 3a, while the average distance
before convergence to an error of ε = 1× 10−4 is shown in
Fig. 3b. The figures show the theoretical values for expected
error and distance match the simulated values. Further, our
intuition is confirmed; by inverting the error, one can see that
the number of samples required to achieve a given error is
monotonically increasing in m, while the distance traveled is
monotonically decreasing. This indicates that DQS achieves
a tradeoff in the noise-free case. Fig. 3c shows a plot of the
expected sampling time as a function of m, with the optimal
value of m indicated in the case where γ = 60 s and η = 4
m/s.

Next, we simulate the PQS algorithm over a range of m
from 2 to 20, where θ ranges over a 100 point grid on
the unit interval with 500 Monte Carlo trials run for each
value of θ. Fig. 4a shows the average number of samples
required to converge to an error of 1 × 10−4. As in the
deterministic case, the required number of samples increases
monotonically with m. Fig. 4b shows the average distance
traveled before converging to the same error value. Again,
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Fig. 3: Simulated and theoretical vales for (a) expected error
after 20 samples and (b) distance traveled for DQS algorithm.
(c) Optimal value of m for γ = 60 s and η = 4 m/s.

2 4 6 8 10 12 14 16 18 20

m
10

20

30

40

50

60

70

80

av
er

ag
e

sa
m

pl
es

(a)

2 4 6 8 10 12 14 16 18 20

m
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

av
er

ag
e

di
st

an
ce

(b)

Fig. 4: Simulated average (a) samples required for con-
vergence and (b) distance traveled for PQS algorithm with
probability of error p = 0.1.

the distance decreases monotonically with m, indicating that
the algorithm achieves the desired tradeoff in the noisy case.

B. Application to Spatial Sampling

In this section, we apply the DQS and PQS algorithms
to the problem of sampling hypoxic regions in Lake Erie.
Fig. 5a shows the lake with an example hypoxic zone
pictured in gray. In [17], the authors show that for the set of
distributions such that the Bayes decision set is a boundary
fragment, a variation on PBS can be used to estimate the
boundary while achieving optimal rates up to a logarithmic
factor. The authors of [17] informally describe the boundary
fragment class on [0, 1]d as the collection of sets in which
the Bayes decision boundary is a Hölder smooth function of
the first d − 1 coordinates. In [0, 1]2, this implies that the
boundary is crossed at most one time when traveling on a
path along the second coordinate. For a formal definition,
see [17], Defn. 1 and the surrounding text.

(a)

(b)

(c)

(d)

Fig. 5: Example splitting of hypoxic zone in Lake Erie
to achieve two boundary fragment sets. (a) Lake erie with
hypoxic region shown in gray. (b) Example splitting of
hypoxic zone to achieve two boundary fragment sets. (c)
Division of boundary fragment into strips. (d) Piecewise
linear estimation of boundary.

Given one location x = (a, b) inside the hypoxic zone,
the problem can be transformed into two problems, each
with a function belonging to the boundary fragment class.
Using models and measurements from previous years, this
is a reasonable assumption. Splitting the lake along the line
y = b yields the two sets shown in Fig. 5b. Now we
can further divide the problem into strips along the first
dimension, as shown in Fig. 5c. Along each of these strips,
the problem reduces to change point estimation of a one-
dimensional threshold classifier as we have studied thus far.
After estimating the change point at each strip, the boundary
is estimated as a piecewise linear function of the estimates,
as shown in Fig. 5d.

We apply this procedure to the hypoxic region shown in
Fig. 5a using 16 strips for a variety of values for time per
sample and speed of watercraft. These values are used with
Theorems 1 and 2 in order to select the optimal value of
m. The total time required for both DQS and binary search
can be seen in Table I. The results are as expected. A higher
sampling time biases the algorithm toward lower values of m
in order to minimize the number of samples required, while
a lower speed biases the algorithm toward higher values of
m in order to minimize the distance traveled. We see that
in the case of a low sampling time and low speed, the total
time saved compared to binary search is on the order of 60



Sampling Time (s) Speed (m/s) m Total Time (hrs)
60 4 2 62
60 4 6.64 43
60 2 2 123
60 2 8.92 81
10 4 2 61
10 4 14.63 35
10 2 2 122
10 2 20.26 64

TABLE I: Comparison of deterministic quantile search with
binary search for a variety of sampling times and speeds.

hours. This brings the sampling time from roughly 5 days
down to 2-3, decreasing the possibility that the spatial extent
of the hypoxic region will change significantly before the
measurement is complete. Similar results hold for PQS, as
shown in Table II, where we show the sampling times with a
probability of measurement error p = 0.1 averaged over 100
Monte Carlo simulations. Note that in this case, the chosen
value of m may not be optimal.

VI. CONCLUSIONS & FUTURE WORK

The algorithms described here demonstrate the desired
tradeoff between samples required and distance traveled
for one-dimensional threshold classifier estimation. We have
shown how this idea can be used to estimate a two-
dimensional region of hypoxia under certain smoothness
assumptions on the boundary, and empirical results indicate
the benefits of quantile search over traditional binary search.

Several open questions remain. Deriving or bounding the
expected distance for the PQS algorithm is an important next
step. Further, while the choice of m shown here is optimal
for the DQS algorithm, the question remains whether this
algorithm is optimal in some general sense. Beyond this, sev-
eral interesting generalizations exist. The boundary fragment
class mentioned here is restrictive [4], and the extension to
more general cases would be of interest. The recent work
of [26] describes a graph-based algorithm that employs PBS
to higher-dimensional nonparametric estimation. Extending
this idea to penalize distance traveled is a promising avenue
for practical applications of quantile search. Finally, the
PQS algorithm requires knowledge of the noise parameter
p in order to update the posterior. The algorithms presented
in [13], [18] enjoy the property that they are adaptive to
unknown noise levels. The development of a noise-adaptive
probabilistic search would certainly be of great interest, with
potential applications in areas such as stochastic optimization
[18] beyond direct applicability to this problem.
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