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Communicated by Joseph DePinto
Harmful algal blooms (HABs) have increased in frequency and magnitude in western Lake Erie and spring phos-
phorus (P) load was shown to be a key driver of bloom intensity. A recently developed Bayesian hierarchical
model that predicts peak bloom size as a function of Maumee River phosphorus load suggested an apparent
increased susceptibility of the lake to HABs. We applied that model to develop load–response curves to inform
revision of Lake Erie phosphorus load targets under the 2012Great LakesWater Quality Agreement. In this appli-
cation, the model was modified to estimate the fraction of the particulate P (PP) load that becomes bioavailable,
and it was recalibrated with additional bloom observations. Although the uncertainty surrounding the estimate
of the bioavailable PP fraction is large, inclusion in themodel improves prediction of bloom variability compared
to dissolved reactive P (DRP) alone. The ability to characterize model and measurement uncertainty through
hierarchical modeling allowed us to show that inconsistencies in bloommeasurement represent a considerable
portion of the overall uncertainty associated with load–response curves. The updated calibration also lends
support to the system's apparent enhanced susceptibility to blooms. The temporal trend estimated by the model
results in an upward shift of the load–response curve over time such that a larger load reduction is required to
achieve a target bloom size today compared to earlier years. More research is needed to further test the hypothesis
of a shift in the lake's response to stressors over time and, if confirmed, to explore underlying mechanisms.

© 2016 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved.
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Introduction

The implementation of primarily point-source phosphorus (P) re-
duction programsunder the 1978Great LakesWater Quality Agreement
(GLWQA) was followed by a decrease in the occurrence of algal blooms
and hypoxia in Lake Erie during the 1980s (DePinto etal., 1986;
Makarewicz etal., 1989). However, harmful algal blooms (HABs) have
increased in frequency and intensity since the mid-1990s in the lake's
western basin (Bridgeman etal., 2013; Scavia etal., 2014; Stumpf etal.,
2012), and especially large blooms have been recorded in recent years.
The 2011 bloomwas the largest on record since systematic HABmonitor-
ing began in 2002 (Michalak etal., 2013), and apreliminary satellite image
analysis suggests that the 2015 bloom surpassed that of 2011 (http://
tinyurl.com/lxqnyro, accessed on 30 November 2015; Schaeffer etal.,
2015). These cyanobacteria blooms, which are generally dominated by
Microcystis spp. (Bridgeman etal., 2012; Brittain etal., 2000; Chaffin etal.,
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2013), have been compromising the safety of beaches and drinking
water supplies, culminating with a 3-day “do not drink” advisory issued
by the City of Toledo in the summer of 2014 that affected over 400,000
people (Cha and Stow, 2015; Jetoo etal., 2015). Several studies identified
phosphorus load from the Maumee River as a key driver of western Lake
Erie bloom intensity (Michalak etal., 2013; Obenour etal., 2014; Stumpf
etal., 2012), although other biophysical factors likely contribute to inter-
annual variability, such as climate-induced shifts in the timing, frequency,
and intensity of extreme weather events (Michalak etal., 2013; Steffen
etal., 2014), impact of invasive species (Conroy etal., 2005; Vanderploeg
etal., 2001), and late-summer nitrogen co-limitation (Chaffin etal., 2013).

Toxic and nuisance algal blooms are among the key eutrophication-
related issues identified in the Great Lakes Water Quality Agreement
Amendment of 2012 Nutrient Annex (GLWQA, 2012) that calls for a
review and update of the 1978 phosphorus load targets. Estimating
the nutrient load reductions necessary to achieve target bloom sizes re-
quiresmodels capable of quantifying the relationship between load and
bloom severity. Accurate quantification of the uncertainty associated
with the load–bloom relationship is also critical to provide policy
makers with defensible ranges of likely future bloom sizes correspond-
ing to different P load scenarios. Quantified uncertainty should be
.V. All rights reserved.
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recognized as essential information in the decision process (Reckhow,
1994; Reckhow and Chapra, 1999) and is particularly important when
modeling a phenomenon like cyanobacteria blooms, where substantial
limitations and uncertainties are known to affect the methods used to
measure bloom size (Ho and Michalak, 2015; Reinart and Kutser,
2006; Srivastava etal., 2013), as well as our knowledge of the multiple
interacting processes that influence bloom formation (Perovich etal.,
2008). Failure to account for these sources of variance could lead to
models that do not accurately reflect our actual knowledge of the
system's behavior.

Obenour etal. (2014) developed a probabilistic model that relates
spring phosphorus load from the Maumee River to peak summer HAB
size in western Lake Erie. Through adoption of a Bayesian hierarchical
approach, the model accounts for multiple sources of uncertainty and
separates process error from measurement error. The original model
calibration, based on two distinct sets of annual bloom size estimates
measured in 2002–2013, identified spring (February–June) total phos-
phorus (TP) load from the Maumee River as the best performing
bloom predictor (Obenour etal., 2014). A positive temporal trend was
also revealedwithin themodel, suggesting an apparent gradual increase
in the lake's susceptibility to large blooms over the years (Obenour etal.,
2014). Notably, the use of nitrate or dissolved reactive phosphorus
(DRP) loads as alternative bloom predictors resulted in lower predict-
ability, while the temporal trend remained significantly positive
(Obenour etal., 2014). These results suggest that the increase in the
DRP portion of the Maumee TP load observed since the 1990s (Baker
etal., 2014a; Stow etal., 2015) may not be sufficient to explain the ap-
parent enhanced vulnerability of western Lake Erie to HAB formation.
DRP is generally considered to be readily available for algal uptake, as
confirmed by bioassay studies conducted in the Maumee River
(Lambert, 2012), thus representing an immediate source of P to fuel
algal growth. The other main portion of the TP load– the particulate
phosphorus (PP) load (Baker etal., 2014a) – was found to be only par-
tially available to algae by several studies conducted on samples taken
in the Maumee River (Table1). However, less is known about the ulti-
mate bioavailability of the spring Maumee PP load after it enters the
western basin and undergoes in-lake physical, chemical, and biological
transformations, including adsorption/desorption, dissolution/
precipitation, and diffusion of phosphate from sediment particles,
recycling by lake biota, and decomposition and mineralization of
organic P compounds (Andersson etal., 1988; Boström etal., 1988a;
Carpenter etal., 1992; Søndergaard etal., 2003). Although PP settles
quickly (Baker etal., 2014b), sediment re-suspension occurs frequently
in western Lake Erie (Boegman etal., 2008; Guildford etal., 2005).
However, the role of sediment phosphorus re-suspension in promoting
Table1
Literature onMaumeeRiver PPbioavailability reviewed to develop the loosely informative
prior for the parameter θ. TheMethod column indicates whether the bioavailable fraction
of PP was estimated indirectly through NaOH extraction or directly through algal bioas-
says. Reported values are generally averages of multiple samples. Whenever a measure
of uncertainty was available in the original study (r: range of measured values; c.v.:
coefficient of variation; s.d.: standard deviation), we reported it.

Year Method Bioavailable PP fraction Reference

1977 NaOH 41.9% Logan etal. (1979)
1977–1978 NaOH 34% (c.v. 14%) Armstrong etal. (1979)
1980 R-NaOH 20.3% (r: 18.5%–23.6%) DePinto etal. (1981)
1980 NaOH 30.1% (r: 26.0%–41.2%) DePinto etal. (1981)
1980 Bioassay 25.3% (r: 15.6%–37.9%) DePinto etal. (1981)
1981 R-NaOH 24% Young etal. (1985)
1981 NaOH 37% Young etal. (1985)
1981 Bioassay 26% Young etal. (1985)
2010 NaOH 41% ± 1% s.d. Lambert (2012)
2010 Bioassay 37% ± 2% s.d. Lambert (2012)
1982 NaOH 28% Baker etal. (2014a)
2007–2008 NaOH 26.2% Baker etal. (2014a)
2009–2010 NaOH 20.1% Baker etal. (2014a)
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algal production is still poorly understood. Furthermore, dreissenid
mussels, which were first observed in the lake in 1986 (Carlton,
2008), have the potential to enhance in-lake PP recycling as DRP
(Arnott and Vanni, 1996; Conroy etal., 2005; Mellina etal., 1995). In
view of these considerations, the GLWQA Nutrient Annex analysis
required models to account for the bioavailable fraction of the P load
when generating load–response curves (GLWQA, 2012).

Here, we apply themodel developed by Obenour etal. (2014) to pro-
duce load–response curves as part of a multi-model approach that in-
formed revision of the GLWQA P load targets for Lake Erie (Scavia
etal., in this issue; GLWQA, 2015). In this work, we modify the original
model to allow for the differentiation between DRP and PP loads and
for the empirical estimation of the fraction of the PP load that becomes
bioavailable over the summer and contributes to bloom development.
The model is also recalibrated to updated and expanded sets of bloom
observations, including new bloom estimates for the years 2013 and
2014. The updatedmodel calibration is compared to the original calibra-
tion (Obenour etal., 2014), to assess the effects of adding the most re-
cent bloom observations on the positive trend in HAB susceptibility
originally estimated by the model.

Methods

Bayesian HAB model

The probabilistic forecasting model developed by Obenour etal.
(2014) predicts peak late-summer bloom size in western Lake Erie
given spring nutrient load from the Maumee River, and a temporal
trend. The temporal trend reflects the lake's apparent increasing
susceptibility to HABs, such that smaller P loads initiate larger blooms
at the end of the study period than at the beginning. Themodel is solved
within a Bayesian hierarchical framework that allows for simultaneous
calibration to multiple sets of bloom observations and for a differentia-
tion betweenmodel prediction (i.e., process) error and bloommeasure-
ment error (Obenour etal., 2014). The model functions in “scenario
mode” (this application) as well as in “forecasting mode”, and it has
recently been incorporated into an ensemble approach developed by
the National Oceanic and Atmospheric Administration to provide sea-
sonal forecasts of peak summer HAB severity (http://tinyurl.com/
og62lbh, accessed on 30 November 2015).

Three candidate models using different probability distributions
(normal, lognormal, and gamma) to characterize error termswere com-
pared (Obenour etal., 2014), and in this application,we use the “gamma
model”, which was found to perform best. Particularly, the model
explained over 80% of the year-to-year variability in peak bloom size
over the study period of 2002–2013 (as determined through model
cross validation) (Obenour etal., 2014). The deterministic component
of the model is as follows:

ẑi ¼ βb þ β0 þ βwWi þ βtTi
βb

�
for β0 þ βwWi þ βtTi N 0
for β0 þ βwWi þ βtTi b 0 ð1Þ

whereβb,β0, βw, andβt aremodel parameters that predict bloom size, ẑi,
in year i, in terms of spring nutrient load, Wi, and model year, Ti. The
parameter βb is a background bloom level representing bloom size in
years of small nutrient load. As load increases beyond a critical threshold,
the size of the bloom increases as a linear function of the load, and the pa-
rameterβw represents the unit increase in bloomsize per unit increase in
load. The parameter β0 is an intercept term, and βtTi essentially allows
the intercept to change over time. The lake's apparent increasing suscep-
tibility toHABs is reflected by a positive value ofβt such that the intercept
increases gradually over time (Obenour etal., 2014). The intercept is
inversely related to the load threshold required to increase bloom size be-
yond the background level. Model predictions are related to bloom
e of nutrient loading in harmful algal bloom formation inwestern Lake
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Fig.1. (a) Peak summer bloom size in western Lake Erie over the period 2002–2014
according to remote sensing (Stumpf) and in situ sampling (Bridgeman) estimates.
(b)Spring (February–June) cumulative TP and DRP loads delivered to western Lake Erie
by the Maumee River over the period 2002–2014. For details on data sources and
estimation methods see the “Methods” section. MT indicates metric tons.
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observations, zi ,j, through the following probabilistic expressions:

zi; j � Gamma ẑi þ γið Þ2=σ2
ϵ ; ẑi þ γið Þ=σ2

ϵ

h i
ð2Þ

γi � Gamma ẑi
2
=σ2

γ ; ẑi=σ
2
γ

� �
−ẑi ð3Þ

Model prediction errors (γi) are drawn from a gamma distribution
with variance σγ

2, and observation measurement errors are drawn
from a gamma distribution with variance σ ϵ

2. Subscript j differentiates
between two distinct sets of observations of annual bloom size (see
next section).

For each year i, the spring nutrient load is determined as a weighted
average of January to June (m = 1 to 6) monthly loads wi ,m, based on
the following equations:

Wi ¼ 1X
ψm

X6
m¼1

wi;mψm ð4Þ

ψm ¼
0

mþ 1−βψ
1

8<
:

form≤ βψ−1
� �

for βψ−1
� �

bm b βψ

form≥βψ

ð5Þ

where βψ is a weighting parameter estimated probabilistically within
the model. A more detailed description of the model formulation can
be found in Obenour etal. (2014).

Updated calibration dataset

The original model was calibrated to two sets of annual bloom size
estimates, one derived from satellite imagery (2002–2012) (Stumpf
etal., 2012) and the other from in situ plankton sampling (2002–
2013) (Bridgeman etal., 2013). As in the original model application,
the 2011 satellite bloom estimate used in this study is lower than
what reported in Stumpf etal. (2012) because we excluded dates
when the bloom moved far into the central basin (October 2011) to
ensure consistency with other years, when the bloom was generally
confined to the western basin (Obenour etal., 2014). Since the original
model publication, bloom estimates for more recent years have become
available both for the “Stumpf” remote sensing dataset (2013–2014) (R.
Stumpf, personal communication, 2015) and for the “Bridgeman” in situ
data set (2014) (T. Bridgeman, personal communication, 2015). Fur-
thermore, the 2013 insitu bloom estimate has been revised
(T.Bridgeman, personal communication, 2015). For this application,
we recalibrated the model to the revised and expanded sets of bloom
estimates,which are generally consistent in showing an overall increase
in bloom size over the study period (Fig.1a).

Bioavailable phosphorus load as nutrient predictor

The original model was calibrated using the spring Maumee TP,
DRP, or nitrate loads as alternative candidate nutrient predictors,
and TP was found to be the best predictor (Obenour etal., 2014). In
this study, we focus our analyses on P (rather than nitrogen),
which is the target nutrient considered within the GLWQA Nutrient
Annex effort (GLWQA, 2012). For this application, the original model
formulation has been modified to develop an estimate of bioavailable
Maumee P load. Specifically, the bioavailable P load was estimated as
the sum of the bioavailable portions of the DRP and PP loads (Baker
etal., 2014a; Lee etal., 1980):

Wi ¼ Bioavailable Pi ¼ ηDRPi þ θPPi ð6Þ

The PP loadwas calculated as the difference between the TP andDRP
loads (Baker etal., 2014a). Based on a review of the literature on the
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bioavailability of different P forms in theMaumeeRiver, DRP is expected
to be approximately 100% readily available to algae (η = 1) (Lambert,
2012), while only a fraction (θ) of the PP load is expected to become
available to algae (Table1). The parameter θ was thus estimated
probabilistically, togetherwith othermodel parameters, through Bayes-
ian inference. For brevity, we refer to this revised model formulation as
the “bioavailable P model”, as opposed to the “TP model” and “DRP
model”, which use TP and DRP loads as the bloom predictor, respective-
ly. To compare results of the model calibration based on bioavailable P
load to those obtained using TP and DRP loads, we also recalibrated
both the TP and DRP models to the updated 2002–2014 bloom
observations (Electronic Supplementary Material (ESM) TableS4). TP
and DRP loads for the period 2002–2014 (Fig.1b) were calculated from
Maumee River nutrient concentration data measured by Heidelberg
University's National Center for Water Quality Research (NCWQR,
http://www.heidelberg.edu/academiclife/distinctive/ncwqr/data,
accessed on 2 September 2015), and stream flow data measured by the
United States Geological Survey (USGS, http://www.usgs.gov/water,
accessed on 2 September 2015) using the same methods outlined in
Obenour etal. (2014).

Model calibration

The model was calibrated to the two sets of bloom observations
through Bayesian inference using a Markov Chain Monte Carlo
(MCMC) sampling algorithm implemented within the WinBUGs
software, interfaced with R through the R package R2WinBUGS (Lunn
etal., 2000; R Core Team, 2015; Sturtz etal., 2005). Detailed information
on the MCMC algorithm settings, chain convergence evaluation, and
parameter prior distributions canbe found inObenour etal. (2014). To de-
velop a loosely informative prior for θ, we reviewed the bioavailable PP
e of nutrient loading in harmful algal bloom formation inwestern Lake
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Fig.2. Bioavailable P model calibrated to the bloom estimates shown in Fig.1: observed
versus predicted bloom sizes with 95% predictive intervals accounting for model
prediction error, bloom measurement error, and parameter uncertainty. (a) Full model
performance; (b) cross validation model performance. The 2013 and 2014 observations
are indicated by empty symbols.

Table2
Posterior parameter means and 95% credible intervals estimated by the bioavailable P
model calibrated to the bloom estimates shown in Fig.1. A detailed description of model
parameters and prior distributions can be found in Obenour etal. (2014).

Parameter Units of measurement Mean 95% CI

β0 1000 MT −18.9 −37.0 – –0.6
βw 1000 MT/(1000 MT/month) 111.8 51.6 – 191.3
βb 1000 MT 7.91 4.34 – 11.86
βt 1000 MT/year 3.57 1.32 – 5.95
βψ 2.46 1.09 – 4.29
σε 1000 MT 5.07 3.18 – 7.47
σγ 1000 MT 3.14 0.18 – 7.14
θ 0.63 0.25 – 0.98
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fractions reported in P fractionation analyses and algal bioavailability as-
says conducted in the Maumee River (Table1). While algal bioassays are
the preferable method to directly estimate the biological availability of
sediment-bound P (Lee etal., 1980), the fraction of PP that is obtained
through NaOH extraction was found to correlate closely with results
from algal bioassays (DePinto etal., 1981; International Joint
Commission, 1980) and is often used as a proxy for the overall amount
of inorganic PP likely to become available to algae (Armstrong etal.,
1979; Baker etal., 2014a). We used a vague normal prior distribution
(mean= 0.3 and standard deviation= 0.7) that is constrained to be be-
tween 0.2 and 1, resulting in a mode of 0.3 and an effective mean of 0.57.
The normal distributionwas given amean of 0.3 because the bioavailable
fraction of PP in the Maumee was generally reported to be between 0.2
and 0.4 (Table1). The lower limit (0.2) reflects the fact that at least 20%
of the Maumee River PP is expected to be readily bioavailable (Table1).
The upper limit (1) allows the model to potentially estimate values for θ
larger than the maximum values measured in the Maumee River
(Table1) to account for potential in-lake biogeochemical processes that
may cause more PP to become available throughout the summer
(Boströmetal., 1988b; Lee etal., 1980). To assess themodel's performance
when predicting data not included in the calibration process, a leave-one-
year-out cross validation was carried out where observations from each
year were removed from the data set one at a time in turn, and the
recalibrated model was used to predict the excluded observations
(Obenour etal., 2014).

Load–response curve development

As part of the GLWQA Nutrient Annex modeling effort, the model
was used to generate load–response curves estimating the expected
range of bloom sizes corresponding to different P load reduction
scenarios. The following scenarios were implemented:

1. We varied the TP load (PP and DRP) between 20 and 554 MT/mo,
roughly corresponding to 5%–150% of the 2008 weighted TP load
(376 MT/mo) (Fig. 3 and ESM TableS1).

2. We varied the PP load between 16 and 437 MT/mo, roughly corre-
sponding to 5%–150% of the 2008 weighted PP load (297 MT/mo),
while holding the DRP load constant at 2008 levels (Fig. 4a and
ESM TableS2).

3. We varied the DRP load between 4 and 117 MT/mo, roughly corre-
sponding to 5%–150% of the 2008 weighted DRP load (79 MT/mo),
while holding PP constant at 2008 levels (Fig. 4b and ESM TableS3).

Because the model includes a temporal trend component, reflecting
the system's apparent increasing susceptibility to algal blooms, we
developed response curves for both 2008 (year chosen as baseline
scenario within the Nutrient Annex effort) and 2014 (approximately
current) lake conditions.

Results

Updated model calibration

The TP andDRPmodels, recalibrated to the 2002–2014 bloomobser-
vations (TableS4), explained less of the inter-annual HAB variability (TP
model: R2 = 84.9%; DRP model: R2 = 77.4%) compared to the original
calibration data set (TP model: R2 = 91.9%; DRP model: R2 = 88.0%;
Obenour etal., 2014). The bioavailable P model performed similarly to
the TP model (R2 = 84.2%), with the largest discrepancies between ob-
served and predicted bloom sizes occurring for the 2013–2014 Stumpf
estimates (Fig.2a). A similar decrease in model skill was observed
when performing a leave-one-year-out cross validation, with the TP
and bioavailable P models calibrated to the new observations resulting
in a cross validation (CV) R2 of 73.7% and 69.8% (Fig.2b), respectively,
compared to a CV-R2 = 83.8% for the original TP model (Obenour
etal., 2014).
Please cite this article as: Bertani, I., et al., Probabilistically assessing the rol
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Posterior parameter mean estimates and their 95% credible intervals
(Table 2 and ESM TableS4) were similar for the models using either TP
or bioavailable P, with the exception of the parameter βw. βw quantifies
the rate of change in bloom size per unit of load, and the larger value
estimated by the bioavailable P model reflects the fact that the latter
represents only a fraction of the overall TP load. Compared to the origi-
nal TPmodel calibration, the updatedmodel resulted in an increased es-
timatedmean value for the temporal trend parameter βt, from2680MT/
year to 3700 and 3570 MT/year for the updated TP and bioavailable P
models, respectively (Table 2 and ESM TableS4). The updated DRP
model also showed a positive temporal trend (2950 MT/year), although
the mean estimated value did not change from the original calibration
(2940 MT/year; D. Obenour, personal communication, 2015). A marked
increase was also observed in the mean estimated value of σϵ,
representing the standard deviation associatedwith bloommeasurement
error (from2690MT for the original calibration data set to approximately
5100MT for the updatedmodels; Table 2 andESMTableS4). The standard
e of nutrient loading in harmful algal bloom formation inwestern Lake
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deviation associated with model prediction error, σγ, showed less of an
increase, from 2630 MT for the original TP model to 2880 MT and 3140
MT for the updated TP and bioavailable P model, respectively (Table 2
and ESM TableS4). The average bioavailable fraction of the PP load (θ) es-
timated by the model is 63%, although the uncertainty surrounding this
estimate is large, indicating that the existingmodel and data have limited
ability to resolve this parameter (Table2).

Load–response scenarios

The ability of the model to separate measurement error frommodel
prediction error allowed us to illustrate the contribution of each source
of variance to the overall uncertainty associatedwith the load–response
curves (Figs.3 and 4). However, only model prediction error is of inter-
est when developing load–response curves to inform management
plans. Hence, the 95% predictive intervals associated with the model
predictions provided for this purpose (ESM TablesS1, S2, and S3) are
based on model prediction and parameter uncertainty only (dashed
lines in Figs.3 and 4) and do not account for bloom measurement
error (dotted lines in Figs.3 and 4).

Separating the TP load into DRP and PP within the bioavailable P
model allowed us to explore the likely ranges of bloom sizes associated
with load reduction scenarios that could potentially be designed to ad-
dress different components of the overall TP load (Figs.3 and 4 and ESM
TablesS1, S2, and S3).Within thismodeling effort, cyanobacteria blooms
in western Lake Erie are classified as “severe”when they reach an over-
all biomass N9600 MT (Scavia etal., in this issue). The updated
cyanobacteria model predicts that under 2008 lake conditions (gray
lines in Figs.3 and 4), a spring Maumee TP load below 230 MT/month
would be necessary to keep peak summer bloom size below 9600 MT
(95% predictive interval: 2500–20,000 MT) (Fig.3 and ESM TableS1). If
only the PP fraction of the TP load is reduced, while holding DRP
constant at 2008 levels, the model estimates that a spring PP load
Fig.3. Load–response curves for cyanobacteria bloom size generated by the bioavailable P
model. Bloom size is shown as a function of the overall weighted Maumee River TP load,
which is the variable routinely measured by monitoring programs and directly
addressed by the Nutrient Annex effort. The corresponding bioavailable P loads
estimated by the model and used to generate the response curves are reported in ESM
TableS1. The plot shows median predictions (thick lines), mean predictions (thin lines),
95% predictive intervals accounting for measurement error, model prediction error and
parameter uncertainty (dotted lines), and 95% predictive intervals accounting for model
prediction error and parameter uncertainty only (dashed lines). Gray lines: 2008 lake
conditions; black lines: 2014 lake conditions. Bloom observations are shaded on a linear
gradient from white (2002) to black (2014).

Fig.4. Load–response curves for cyanobacteria bloom size as a function of (a)weighted
Maumee River PP load, while holding the DRP load to the 2008 value (79 MT/month)
and (b)weighted Maumee River DRP load, while holding the bioavailable PP load to the
estimated 2008 value (187 MT/month). The corresponding bioavailable P loads
estimated by the model and used to generate the response curves are reported in ESM
TablesS2–S3. The plots show median predictions (thick lines), mean predictions (thin
lines), 95% predictive intervals accounting for measurement error, model prediction
error and parameter uncertainty (dotted lines), and 95% predictive intervals accounting
for model prediction error and parameter uncertainty only (dashed lines). Gray lines:
2008 lake conditions; black lines: 2014 lake conditions.
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below 135 MT/month would be necessary (Fig.4a and TableS2). Finally,
under the hypothetical scenario of a decrease in DRP load only, the
model predicts that even if a highly unrealistic 95% reduction from the
2008 DRP load was achieved, bloom size would still be as high as
10,900 MT (95% predictive interval: 3500–21,700 MT, Fig.4b and ESM
TableS3).

Under approximate 2014 conditions (black lines in Figs.3 and 4), the
marked decrease in the load threshold estimated to trigger blooms
above background level results in much larger mean predicted bloom
size associated with the load reductions mentioned above (Figs.3 and
4 and ESM TablesS1, S2, and S3). For example, the model predicts that
under 2014 conditions a TP load of 230 MT/month would still result in
an average bloom size of 28,000 MT (95% predictive interval: 17,000–
38,000 MT).
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Discussion

Updated calibration data set

The decrease in predictive performance when calibrating to the
revised and expanded sets of bloom observations suggests that the
system may be undergoing complex non-linear dynamics that may no
longer be best captured by the linear temporal trend included in the
model. Specifically, the ratios of bloom size to spring Maumee TP and
to DRP load, respectively, are markedly higher in 2013 (for both the
Stumpf and the Bridgeman estimates) and in 2014 (for the Bridgeman
estimate) than in previous years (ESM Fig.S1), supporting the hypothe-
sis that the lake may be becoming more susceptible to cyanobacteria
blooms over time, with smaller loads apparently triggering larger
blooms in most recent years (Obenour etal., 2014). However, the
limited number of years in the calibration data set prevents drawing
definitive conclusions on the occurrence of a long-term trend in the
system's vulnerability to HABs, and we cannot rule out the hypothesis
that the larger deviations from model predictions observed in most
recent years are at least partly the result of year-to-year variability not
necessarily associated with a systematic trend.

The temporal trend estimated by the model can be viewed as a
variable representing ecological processes that may be contributing to
the recent HAB resurgence in western Lake Erie but are still not suffi-
ciently well understood to be explicitly incorporated in the model. For
example, it has been hypothesized that climate-driven changes in the
frequency and timing of extreme spring rainfall events, followed by
warm and calm summer conditions, might enhance bloom develop-
ment (Michalak etal., 2013). Increased sediment P recycling and selec-
tive filter-feeding by invasive dreissenid mussels may also potentially
favor cyanobacteria dominance (Arnott and Vanni, 1996; Conroy etal.,
2005;Mellina etal., 1995; Vanderploeg etal., 2001).While zebramussels
have declined in the western basin since the 1990s, there is some evi-
dence of an increase in the abundance of quagga mussels since the
early 2000s (US EPA and Environment Canada, 2014). Although conclu-
sive evidence on the basin-wide impact of mussels on bloom formation
in recent years is still lacking for Lake Erie, a recent study of Lake Mich-
igan illustrates how the density, distribution, and phytoplankton im-
pacts of mussels have evolved over recent decades (Rowe etal., 2015).
Finally, a change in the composition of the spring Maumee P load, and
specifically an increase in the more readily bioavailable DRP load since
the early 90s, have been suggested to play a role in the recent resur-
gence of HABs (Baker etal., 2014a). While the potential impacts of
weather conditions and invasive species are not explicitly incorporated
in themodel, our results suggest that the increase in the DRP load alone
may not be sufficient to explain the apparent increase in the lake's
vulnerability to HABs. The DRP model explains a substantially smaller
portion of the inter-annual variability in bloom size compared to the
TP and bioavailable P models, confirming that the latter are better pre-
dictors of bloom intensity than DRP (Obenour etal., 2014; Stumpf etal.,
2012). Furthermore, although the updated DRP model does not show
an increase in the temporal trend parameter relative to Obenour etal.
(2014), the parameter estimate remains significantly positive (ESM Ta-
bleS4), indicating that replacing TP with DRP as themain bloom predic-
tor does not eliminate the apparent positive trend in HAB susceptibility
estimated by the model.

The decrease in the updated model performance is also partly
associated with the marked discrepancy between the Stumpf and
Bridgeman bloom estimates in 2013 and even more so in 2014
(Fig.1a), resulting in a considerable increase in the bloommeasurement
error component (σϵ; Table 2 and ESMTableS4). The causes of these dis-
crepancies are not completely understood, and they could be partly as-
sociated with method-specific spatiotemporal limitations that affect
remote sensing vs. in situ bloom estimates (Ho and Michalak, 2015).
For example, the in situ estimates are averages of bi-weekly samples
collected at 6 stations, covering a limited area of approximately
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340 km2 in the vicinity of Maumee Bay (Bridgeman etal., 2013), while
the remote sensing estimates are basin-wide, 10-day composites de-
rived by summing the maximum observed (cloud-free) cyanobacteria
biomass values across all image pixels (Stumpf etal., 2012). In addition,
while in situ samples are taken over the whole water column, remote
sensing estimates are typically representative of only the upper portion
of thewater column, thus potentially underestimating bloom size under
well-mixed conditions (Wynne etal., 2010). The method used to calcu-
late annual bloom size is also different, with the annual remote sensing
estimates calculated as themaximum30-day (i.e., 3 consecutive 10-day
composites)moving average (Stumpf etal., 2012) and the annual in situ
estimates derived by integrating bi-weekly bloom sizes over the whole
summer (Bridgeman etal., 2013). The different calculation approaches
may cause discrepancies between the two sets of annual bloom esti-
mates if meteorological and hydrodynamic conditions result in the
bloom persisting longer than usual in the vicinity of Maumee Bay,
where the in situ sampling stations are located. However, no substantial
differences in inter-annual variability emerge when comparing in situ
annual bloom estimates obtained by integrating over the whole sum-
mer vs. calculating the maximum 30-day moving average (R2 = 97%).

In general, the differentiation of predictive and measurement error
illustrates a key benefit of the hierarchical modeling approach (Cressie
etal., 2009), which allows for representation of multiple sources of
stochasticity and thus provides amore accurate quantification of overall
predictive error and an improved understanding of the causes of in-
creased uncertainty within the model. The updated calibration results
indicate that uncertainty in bloom size characterization currently
represents a substantial component of the overall uncertainty in HAB
predictions. Studies aimed at filling this gap by developing methods to
integrate multiple data sources and generate more accurate bloom
estimates thus have the potential to reduce overall uncertainty in HAB
size predictions.

Bioavailable P load as bloom predictor

The posterior mean for θ (0.63) is found to be slightly higher than
the prior mean of 0.57. While the uncertainty in this posterior estimate
is very large (Table2), the shift in the prior mean to a larger posterior
value indicates the increase in likelihood that results from an enhanced
contribution of PP, relative to DRP. This increase is also confirmedwhen
using similarly vague priors for θwith smaller means (below 0.57) that
also produce posterior means greater than 0.60 (not shown). In any
case, the Bayesian approach allows for an explicit representation of
the uncertainty associated with our prior knowledge of θ, and our
(slightly) updated posterior knowledge of θ.

Althoughmultiple studies have quantified the bioavailability of PP in
theMaumee River (Table1), little observational information is available
on the ultimate fate and availability of PP under in-lake conditions.
Several in-lake processes might contribute to enhance the bioavailabil-
ity of the PP load after it settles on the lake bottom, when compared to
the bioavailability measured in the river. Most of the P load is typically
delivered to the western basin in early spring (Stow etal., 2015), while
Microcystis blooms typically initiate aroundmid-July and peak between
August and September (Ho and Michalak, 2015; Wynne and Stumpf,
2015). During the lag period between load delivery and bloom growth,
a portion of the organic PP pool could be regenerated as DRP through
microbial mineralization and return to the water column through
wind-induced mixing (Kleeberg and Dudel, 1997; Søndergaard etal.,
1992). Furthermore, although the western basin does not undergo per-
manent seasonal stratification, intermittent stratification and subse-
quent transient bottom water hypoxic conditions have been
repeatedly observed in the summer (Bridgeman etal., 2006; Britt,
1955; Britt etal., 1968; Carr etal., 1965; Loewen etal., 2007), potentially
enhancing release of P from the sediment under reducing conditions
(Behrendt etal., 1993; Holdren and Armstrong, 1980). Several experi-
mental studies have also shown that invasive mussels can significantly
e of nutrient loading in harmful algal bloom formation inwestern Lake
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enhance the rate at which PP is recycled into the water column as DRP,
thereby decreasing P turnover times and further increasing PP bioavail-
ability to algae (Arnott and Vanni, 1996; Conroy etal., 2005; Mellina
etal., 1995). Ecosystem-level studies quantifying the role of these in-
lake processes in supplying P to fuel algal blooms could improve our un-
derstanding of the effective in-lake bioavailability of the PP load deliv-
ered to western Lake Erie. Such knowledge could be readily
incorporated within a Bayesianmodeling framework in the form of rel-
atively narrower (more informative) prior distributions that could help
reduce uncertainty in the estimates of weakly identifiable parameters.

Load–response scenarios

The Maumee spring TP load estimated by the model to result in a
mean bloom size of 9600 MT under 2008 conditions (230 MT/month) is
comparable to the values obtained by other cyanobacteriamodels includ-
ed in the GLWQANutrient Annexmulti-model effort (Stumpf etal., in this
issue; Verhamme etal., in this issue). However, thewidth of the predictive
intervals indicates that the uncertainty associatedwithmodel predictions
needs to be taken into careful consideration when setting load targets,
and it highlights the need to design appropriate adaptive management
plans that can assess the lake's response to nutrient reductions and help
decrease model predictive uncertainty as new knowledge is gained.

Results of the PP- vs. DRP-only reduction scenarios are also in agree-
ment with the Western Lake Erie Ecosystem Model (WLEEM) simula-
tions, with both models suggesting that even 100% removal of the
Maumee DRP load alone would still result in unacceptable cyanobacteria
blooms (Verhamme etal., in this issue). The cyanobacteria models
adopted in the multi-model approach are based on somewhat different
load periods, i.e., March–July for the models by Stumpf etal. (in this
issue) and Verhamme etal. (in this issue) vs. approximately February–
June for thismodel, as determined by Bayesian inference of theweighting
parameter βψ. Although theMaumee River P load shows some seasonal-
ity, with a large portion of the annual load delivered in early spring and
relatively small loads in summer (July–September), there is substantial
inter-annual variability in load seasonal timing (Stowetal., 2015). Oneno-
table example occurred in 2015, when intense precipitation in June led to
substantially larger loads later in the season (June–July) than expected on
average (http://www.heidelberg.edu/academiclife/distinctive/ncwqr/,
accessed on 2 September 2015). As more observations become available,
it may be possible to developmore sophisticated approaches toweighing
monthly loads, providing further insights into the critical loading period.

Despite the good agreement with other models when considering
2008 conditions, the lake's apparent increasing susceptibility to large
blooms estimated by the model (Obenour etal., 2014), further support-
ed by the updated model calibration, led to an average predicted bloom
size well above the 9600 MT threshold for a TP load of 230 MT/month
under nearly current 2014 conditions (Fig.3). In fact, the model predicts
that even at extremely low TP loads, bloom size could still be as high as
12,600 MT under current conditions (Fig.3). Although there is greater
uncertainty in extrapolating bloom size values for small nutrient
loads– for which extremely limited observations are available– it is rea-
sonable to expect that even after substantial external load reductions,
the internal P load accumulated over the years in the lake's sediments
might continue to support high levels of primary production and
delay the lake's response to watershed management actions (Bocaniov
etal., in this issue; Chapra and Canale, 1991; Søndergaard etal., 2003;
Welch and Cooke, 1995). In general, ecosystems have often been
shown to undergo complex non-linear trajectories in response to
changes in stressors due to shifts in internal feedbacks that may cause
hysteretic behaviors (DeYoung etal., 2008; Scheffer and Carpenter,
2003; Scheffer etal., 2001) and/or concurrent changes in external
drivers that influence ecosystem responses (“shifting baselines”;
Carstensen etal., 2011; Duarte etal., 2009). The main implication of
both the hysteresis and shifting baselines conceptual frameworks is
that a system's response to a decrease in the level of a stressor (e.g.,
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nutrient loading) may deviate substantially from the system's
behavior observed during the preceding phase of stress increase.
Furthermore, in many aquatic systems, the level of nutrient reduction
required to restore pre-eutrophication conditions was found to be sub-
stantially higher than the corresponding nutrient increase that led to
the eutrophic state (Dokulil and Teubner, 2005; Duarte etal., 2009;
Ibelings etal., 2007). The positive temporal trend estimated by the
model appears consistent with this conceptual framework in indicating
that the lake's response to nutrient loading may be changing over time,
and a larger reduction in P load may be required to achieve a desired
bloom threshold under current conditions compared to a decade ago
(Figs.3 and 4).

The limitations of the available data should be taken into careful
consideration when interpreting these results. The relatively small
number of years in the calibration data set, coupled with the large
year-to-year variability, currently limit our ability to adequately charac-
terize the system's long-term behavior. Estimates of the temporal trend
parameter are sensitive to individual years, as shown by the 38% in-
crease in the parameter's estimate when adding two high-bloom years
(2013 and 2014) to the calibration data set. It appears unlikely that
this estimated rate of increase would continue in the long term, and
the amount of data currently available is most likely not sufficient to
provide a robust quantitative estimate of a potential long-term trend.
While our results suggest that the system's response to stressors may
be changing over time, a longer time series is needed to further test
this hypothesis and, if verified, to elucidate the underlyingmechanisms.
As more years become available, more flexible temporal modeling ap-
proaches could be applied to better capture potential complex changes
in the system's behavior that are not easily accommodated by a static
temporal trend. For example, temporal shifts in the processes underly-
ing system dynamics can be tracked through modeling approaches
that allow parameters to evolve over time, such as dynamic linear
models or weighted regression, where older information is discounted
by giving earlier observations less weight as time progresses, so that
at each time step parameter estimates are more strongly influenced
by more recent years (Hirsch etal., 2010; Lamon etal., 1998, 1999).

A longer calibration data setwould also allow for exploring addition-
al predictors that are hypothesized to influence bloom size, such as
hydro-meteorological factors or invasive mussel biomass. These factors
may help decrease predictive uncertainty and explain potential changes
in the system's behavior over time. Such efforts could significantly
improve our ability to understand and control HABs, if coupled with
an active adaptive management approach where evolving knowledge
is incorporated into flexible predictivemodels that can capture complex
ecosystem dynamics and update management strategies.
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