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Communicated by Robert E. Hecky
In response to water quality changes in the Great Lakes since implementing the 1978 Amendment to the Great
Lakes Water Quality Agreement, the US and Canada renegotiated the agreement in 2012, requiring the govern-
ments to review and revise phosphorus (P) load targets, starting with Lake Erie. In response, the governments
supported a multi-model team to evaluate the existing objectives and P load targets for Lake Erie and provide
the information needed to update those targets. Herein, we describe the process and resulting advice provided
to the binational process. The collective modeling effort concluded that avoiding severe Western Basin (WB)
cyanobacteria blooms requires: 1) focusingon reducing total P loading from theMaumeeRiver,with an emphasis
on high-flow events during March–July, 2) focusing on dissolved reactive P load alone will not be sufficient
because there is significant bioavailable P in the particulate phosphorus portion of the load, and 3) loading
from the Detroit River is not a driver of cyanobacteria blooms. Reducing Central Basin (CB) hypoxia requires a
CB + WB load reduction greater than what is needed to reach the WB cyanobacteria biomass goal. Achieving
Cladophora thresholds will be challenging without site-specific load reductions, and more research is needed.

© 2016 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved.
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Introduction

In response to significant water quality changes in the Great Lakes
since implementing the 1978 Amendment to the Great Lakes Water
Quality Agreement (GLWQA) (e.g., Evans et al., 2011; IJC, 2014; Scavia
et al., 2014), the US and Canada renegotiated the GLWQA (GLWQA,
2012). Annex 4 of the 2012 GLWQA Protocol set interim phosphorus
(P) loading targets identical to those established in the 1978 Amend-
ment, and required the US and Canadian governments to review those
targets and recommend adjustments if needed, starting with Lake Erie.

As part of the GLWQA review, a committee of modelers examined
data and models used to support the P target loads in the 1978 Amend-
ment relative to the current status of the Lakes and models (DePinto
et al., 2006). At that time, a set of Great Lakes eutrophication models
were used to help establish target P loads designed to eliminate excess
algae growth and to reduce areas of low dissolved oxygen (DO) concen-
tration — key eutrophication symptoms at that time. Those models
ranged from simple empirical relationships to kinetically complex,
process-oriented models (Bierman, 1980; Vallentyne and Thomas,
1978), and post-audit of several of those models confirmed they had
established sound relationships between P loading and system-wide
averaged P and chlorophyll-a concentrations (e.g., Di Toro et al., 1987;
Lesht et al., 1991).
es Research. Published by Elsevier B
However, DePinto et al. (2006) concluded that those models were
not resolved enough spatially to capture the characteristics of nearshore
eutrophication, nor the impacts of more recent ecosystem changes, such
as impacts from dreissenidmussels and other invasive species. Norwere
they designed to address harmful algal blooms (HABs). Their recommen-
dation was to establish a new effort to quantify relative contributions of
the factors controlling Great Lakes re-eutrophication (Scavia et al., 2014),
and to revise quantitative relationships among those stressors and eutro-
phication indicators such as HABs, hypoxia, and nuisance benthic algae.

In response, several newGreat Lakesmodeling effortswere initiated,
and given the availability of these new models, the parties to the
GLWQA, Environment Canada and the US EPA, supported a new team
to evaluate the interim P objectives and load targets for Lake Erie and
to provide the information needed to update those targets. Herein, we
describe that process and the resulting advice provided to the GLWQA
process because the Lake Erie plan is intended to also serve as a tem-
plate for the other Great Lakes.
Approach

Ecosystem Response Indicators

Before initiating the modeling work, Ecosystem Response Indicators
(ERIs) and their associated metrics were established with the GLWQA
Annex 4 Nutrient Objectives and Targets Task Team (GLWQA, 2015).
.V. All rights reserved.
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Four ERIs of Lake Erie eutrophication appropriate for the Annex 4
Objectives were selected:

• Western Basin (WB) cyanobacteria biomass represented by the maxi-
mum 30-day average cyanobacteria biomass

• Central Basin (CB) hypoxia represented by number of hypoxic days;
average extent of hypoxic area during summer; and average hypolim-
nion DO concentration during August and September

• Basin-specific overall phytoplankton biomass represented by summer
average chlorophyll-a concentration

• Eastern Basin (EB) Cladophora represented by dry weight biomass and
stored P content.

Multi-model strategy

Amulti-model approach was used to explore relationships between
the ERIs and P loads because a suite of models with a broad range of
complexities and approaches affords an informative comparison of re-
sults. Bierman and Scavia (2013) and Weller et al. (2013) identified a
number of benefits of applyingmultiplemodels of differing complexity:

• Problems and data are viewed from different conceptual and opera-
tional perspectives

• The level of risk in environmental management decisions is reduced
• Model diversity adds more value to the decision process than model
multiplicity

• Findings are stronger when multiple lines of evidence are available
• Using multiple models increases knowledge and understanding of
underlying processes

• Average predictions from a set of models are typically better than
from a single model

• Information from multiple models can help quantify uncertainty
• Multiplemodels can expand opportunities for additional stakeholders
to participate

• Reconciling differences amongmodels provides insights on key sources
and processes

There is also precedent for usingmulti-model approaches to support
management decisions. As noted above, this approach was used in the
late 1970′s to establish the original target P loads for the Great Lakes
(Bierman, 1980). In that case, the six models ranged in complexity
from an empirical steady state model (Vollenweider, 1976) to more
complex, mechanistic models of Lake Erie (Di Toro and Connolly,
1980) and Saginaw Bay (Bierman and Dolan, 1981). Additional exam-
ples include addressing polychlorinated biphenyls (PCBs) in Lake
Ontario (IJC, 1988), and nutrient loads for the Neuse River Estuary
(Stow et al., 2003), the Gulf of Mexico (Scavia et al., 2004), and the
Chesapeake Bay (Weller et al., 2013).

After establishing the ERIs, model equations, coefficients, driving
variables, assumptions, and time step of predictions were described;
calibrations, confirmations, and uncertainties/sensitivities were com-
pared; and the ability of each model to develop ERI metric load–
response curves was reviewed. With this information and results from
previous publications, the model capabilities were reviewed with re-
spect to the following evaluation criteria:

• Applicability to ERI metrics: The models' ability to address the spatial,
temporal, and kinetic characteristics of the ERI metrics. While models
that address other objectives can be informative, highest priority was
given to those that can address the ERIs directly.

• Extent/quality of calibration and confirmation: Calibration — The
models' ability to reproduce ERI metric state-variables and internal
processes. Post-calibration testing — The models' ability to replicate
conditions not represented in the calibration data set.

• Extent of model documentation: The extent of documentation, in-
cluding descriptions ofmodel kinetics calculations, inputs, calibration,
confirmation, and applications.
• Level of uncertainty analysis: The extent towhich themodels evaluated
uncertainty and sensitivity, including for example, those associated
withmeasurement error, model structure, parameterization, aggrega-
tion, and uncertainty in characterizing natural variability.

The models

The models that satisfied these criteria are summarized in Table 1
and described briefly below. Model formulation, calibration, confirma-
tion, and sensitivity/uncertainty, as well as the construction of load–
response curves are provided in more detail in Scavia et al. (2016)
and in this issue (Bertani et al., 2016-in this issue; Bocaniov et al.,
2016-in this issue; Chapra et al., 2016-in this issue; Rucinski et al.,
2016-in this issue; Stumpf et al., 2016-in this issue; Valipour et al.,
2016-in this issue; Verhamme et al., 2016-in this issue; Zhang et al.,
2016-in this issue), and in Auer et al. (2010), Canale and Auer (1982),
Tomlinson et al. (2010) and Lam et al. (2008, 1987, 1983).

Total Phosphorus Mass Balance Model (Chapra et al., 2016-in this issue)

The original version of this parsimonious total phosphorus (TP)
mass balance model was used (along with other models) to establish
P loading targets for the 1978 Great Lakes Water Quality Agreement.
The model has been subsequently revised and updated, including
the expansion of the calibration dataset through 2010 and an increase
in the post-1990 apparent TP settling velocity to improvemodel perfor-
mance, suggesting that mussel invasion may have enhanced the lakes'
ability to retain P (Chapra and Dolan, 2012). The model predicts annual
average TP concentrations in the offshore waters of the Great Lakes as a
function of external load. For Lake Erie, themodel computes basin-wide
annual average TP concentrations as a function of loads to each basin. In
this application, an empirical relationship between summer chlorophyll
and TP concentrations derived for each basin was used to predict basin-
specific average chlorophyll levels under different TP load scenarios.

U-M/GLERLWestern Lake ErieHABmodel (Bertani et al., 2016-in this issue)

A probabilistic empirical model developed by Obenour et al. (2014)
relates peak summer cyanobacteria biomass in the WB to spring P
loading from the Maumee River. The model is calibrated to multiple
sets of in situ and remotely sensed bloom observations through a
Bayesian hierarchical approach that allows for rigorous uncertainty
quantification. The model includes a temporal trend component that
suggests an apparent increased susceptibility to cyanobacteria blooms
over time. For this application, the original model (Obenour et al.,
2014) wasmodified to include an empirical estimate of the bioavailable
portion of the TP load as bloom predictor.

NOAA Western Lake Erie HAB model (Stumpf et al., 2016-in this issue)

This model is based on an empirical regression between spring P
load or flow from the Maumee River and peak summer cyanobacteria
biomass in the WB as determined through satellite imagery (Stumpf
et al., 2012). For this application, the model has been modified to
account for the potential difference in cyanobacteria response to load
intensity in warm vs. relatively cold early summers. An estimate of bio-
available P load was also tested as bloom predictor.

Nine-box model (Lam et al., 2008, 1987, 1983)

This coarse grid (9-box) P mass balance model was developed to
quantify the main physical and biochemical processes that influence
Lake Erie eutrophication and related hypoxia (Lam et al., 1983). The
model was previously calibrated and validated with water quality
observations from 1967 to 1982 (Lam et al., 1987). For this application,



Table 1
Models included in the multi-model effort and Ecosystem Response Indicators (ERIs) addressed by each.

Ecosystem Response Indicators

Basin-specific overall phytoplankton biomass WB cyanobacteria peak summer biomass CB hypoxia EB Cladophora

NOAA Western Lake Erie HAB Model X
U-M/GLERL Western Lake Erie HAB Model X
Total Phosphorus Mass Balance Model X
1-D Central Basin Hypoxia Model X (CB only) X
Ecological Model of Lake Erie (EcoLE) X (WB only) X
Nine-box Model X
Western Lake Erie Ecosystem Model (WLEEM) X (WB only) X
ELCOM-CAEDYM X X X
Great Lakes Cladophora Model (GLCM) X
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the original calibration was modified to account for changes in settling
and re-suspension processes due to dreissenid mussel invasion as de-
scribed in Scavia et al. (2016).

1-Dimensional Central Basin hypoxia model (Rucinski et al., 2016-
in this issue)

A one-dimensional linked vertical hydrodynamic and eutrophica-
tion model was previously developed, calibrated, and corroborated
with water quality observations in the CB (Rucinski et al., 2014, 2010).
The model is driven by a 1-D hydrodynamic model that provides
temperature and vertical mixing profiles. The biological portion of
the model incorporates P and carbon (C) loading and internal cycling,
algal growth and decay, zooplankton grazing, water column oxygen
consumption and production processes, and sediment oxygen demand
(SOD). The model has been tested with 19 years (1987–2005) of ob-
served loading rates and meteorological conditions to understand the
relative contribution of stratification conditions versus P loading extent
and seasonal timing on the severity of hypoxia in the CB.

Ecological model of Lake Erie — EcoLE (Zhang et al., 2016-in this issue)

A two-dimensional hydrodynamic and water quality model based
on the CE-QUAL-W2 framework was developed and applied to Lake
Erie (Zhang et al., 2008). The model was calibrated with observations
from 1997 and verified with data collected in 1998 and 1999. The
model has been used to estimate the impact of grazing and nutrient ex-
cretion by dreissenid mussels on phytoplankton biomass and seasonal
succession (Zhang et al., 2011). As part of this application, the model
was also used to estimate the spatial distribution and relative contribu-
tion of different external and internal P sources to the overall P lake
budget.

Western Lake Erie Ecosystem Model — WLEEM (Verhamme et al., 2016-in
this issue)

The Western Lake Erie Ecosystem Model (WLEEM) is a three-
dimensional, fine-scale, process-based, linked hydrodynamic-sediment
transport-eutrophication model developed to simulate water quality
responses to changes in meteorological conditions and loads of water,
sediments, and nutrients to the WB. The numerous state variables
encompass three phytoplankton groups, including cyanobacteria. In
this application, the model was used to simulate the response of WB
summer cyanobacteria biomass to a broad suite of P load scenarios,
including assessing the impact of potential load reduction strategies
selectively targeting specific tributaries or specific P forms (dissolved re-
active P (DRP) vs. TP).

ELCOM-CAEDYM (Bocaniov et al., 2016-in this issue)

This is a three-dimensional hydrodynamic and ecological model that
dynamically couples a hydrodynamic model (Hodges et al., 2000) with
a bio-geochemical model (Hipsey, 2008). The model was calibrated and
applied to Lake Erie to explore the effect of mussel grazing on phyto-
plankton biomass, the sensitivity of thermal structure to variations
in meteorological parameters, the effects of winter ice on water quality
parameters, and the variability in hypoxic area extent as a function of bot-
tomwater DO concentration (Bocaniov and Scavia, 2016; Bocaniov et al.,
2014; Leon et al., 2011; Liu et al., 2014; Oveisy et al., 2014). As part of this
application, different DO concentration thresholds (1–4 mg/L) were
used for defining hypoxia when comparing P loading scenarios.

Eastern Basin Cladophora modeling

The Annex 4multi-model work for this ERI was conducted using the
Great Lakes CladophoraModel (Auer et al., 2010). This model simulates
biological processes driving Cladophora biomass and stored P, and
it predicts Cladophora standing crop as a function of depth, light,
temperature, and DRP concentration. The model was originally cali-
brated and verified with data from Lake Huron and Lake Michigan
(Tomlinson et al., 2010). For the Annex 4 analysis, the model was ap-
plied to Lake Erie's EB (see Scavia et al., 2016) and results relating
Cladophora biomass to in-lake DRP concentrations were linked to out-
put from the Total PhosphorusMass BalanceModel and an empirical re-
lationship between TP and DRP concentrations 2016. Because of the
insufficient time, resources, and data available in the time frame of the
Annex 4 work plan, it was recognized that this generic application
was a preliminary estimate and that additional site-specific research,
monitoring, and modeling would be needed to obtain a more confident
estimate of target P loads for the Eastern Basin. In response, following
the Annex 4 work, Valipour et al. (2016-in this issue) linked the
Cladophora Growth Model (GCM) (Higgins et al., 2006) with a high-
resolution 3-D hydrodynamic and water quality model (ELCOM-
CAEDYM) to evaluate the fine-scale response of Cladophora biomass
along the northern shoreline of the EB to changes in external phospho-
rus loads. While results from this work were not available at the time of
the original multi-model effort, they provide relevant new insight on
the relative contribution of local tributary loads vs. offshore-nearshore
nutrient exchanges to Cladophora growth in the EB of Lake Erie.

Phosphorus loadings and scenarios

All of themodels include P loading as input, and used 2008 loads and
conditions as baselines for comparison. Maccoux et al. (2016-in this
issue) provide a detailed long-term analysis of TP (1967–2013) and
DRP (2009–2013) loads delivered annually to Lake Erie. The analysis
confirms that after a period of gradual decline in the 70s and early
80s, TP loads have shown high year-to-year variation, but no clear
long-term trend. Inter-annual variability is largely driven by hydrome-
teorological conditions, which modulate the timing and magnitude of
surface runoff and ultimately the amount of nutrients delivered to the
lake (Dolan and Richards, 2008). During 2003–2013, TP from non-
point sources contributed on average 71% of the total annual load,
while point sources accounted for 19% and atmospheric load and inputs
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from Lake Huron made up the remaining 10%. TP loads differ substan-
tially among basins, with the WB receiving on average 60% of the
whole lake load, and the CB and EB receiving 28% and 12%, respectively.
For 2003–2013, annual loads to the three basins ranged between 487
and 1854 metric tons (MT) in the EB (average: 1059 MT), 1411–
3703 MT in the CB (average: 2551 MT), and 3941–7080 MT in the WB
(average: 5493 MT).

DRP represented on average 30% of the TP load during 2009–2013,
with the WB receiving on average 66% of the whole lake DRP load and
the CB and EB receiving approximately 26% and 9%, respectively. Non-
point and point sources contributed on average 49% and 39% of the
total annual DRP load, respectively, with atmospheric sources and
loads from Lake Huron making up the remaining 12%.

The large TP and DRP loads delivered to the WB derive overwhelm-
ingly from two major sources: the Maumee and Detroit rivers. The vast
majority of the P delivered by the Maumee River originates from agri-
cultural sources (Han et al., 2012), which dominate the watershed,
and are the primary cause of the extremely high TP concentrations in
the Maumee (and other WB tributaries) compared to the Detroit River
(Fig. 1). As shown in Fig. 1, the Detroit River P concentration is well
below that required for producing a cyanobacteria bloom.

While agricultural non-point sources are also primarily responsible
for high DRP concentrations in the Maumee, point source contributions
result in relatively large DRP loads in the Detroit River aswell (Maccoux
et al., 2016-in this issue). As a consequence, while the Maumee River
contributes only about 5% of the total flow into the WB, it contributes
approximately 48% of the TP load and 31% of the DRP load. On the other
hand the Detroit River contributes 41% and 59% of the TP and DRP load,
respectively, despite accounting for over 90% of the flow (IJC, 2014;
Maccoux et al., 2016-in this issue).
Fig. 1. Annual average TP and DRP loads delivered to the Western Basin by major tributaries
concentration (FWMC, lower right panel) from the same tributaries.
A recent long-term (1975–2013) analysis of the Maumee River
discharge and nutrient loads showed that while TP concentrations
remained stable since the 1990s, DRP concentrations have increased
(Stow et al., 2015). However, the authors also show that both TP and
DRP loads have increased since the 1990s as a result of a concurrent in-
crease in river discharge. The analysis also suggests the occurrence of
changes in load seasonality over the past two decades, with a gradual
increase in March discharge and P loads. This is especially important
as both TP and DRP loads tend to peak inMarchwhile typically showing
relatively low values from July to October (Stow et al., 2015).

Long-term and seasonal changes in the Maumee DRP loads have re-
ceived increased attention as DRP is generally assumed to be readily
available to algae (e.g., Baker et al., 2014a, 2014b). Several algal bioavail-
ability assays conducted in the Maumee River have confirmed that
while DRP is virtually 100% bioavailable to algae, the other major frac-
tion of the P load – particulate phosphorus (PP) – is only partially avail-
able (DePinto et al., 1981; Young et al., 1985). Results from algal assays
were generally consistent with chemical fractionation studies in indi-
cating that approximately 20–40% of theMaumee PP load is bioavailable
2016. Wherever possible, the models included in this effort accounted
for the different bioavailability of DRP and PP, either by explicitly incor-
porating processes contributing to in-lake cycling (e.g., Bocaniov et al.,
2016-in this issue; Rucinski et al., 2016-in this issue; Verhamme et al.,
2016-in this issue; Zhang et al., 2016-in this issue) or by using the
best available knowledge to provide an estimate of the bioavailable frac-
tion of the P load (Bertani et al., 2016-in this issue; Stumpf et al., 2016-in
this issue). However, the load–response curves estimated by each
model are expressed in terms of TP, the component currently measured
by most monitoring programs and directly addressed by the GLWQA
Nutrient Annex. In developing loading scenarios, 2008 was chosen as
(upper panel), and annual average flow (lower left panel) and flow weighted mean TP
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a baseline year because its loadwas closest to the original 1978 Annex 3
target of 11,000 MT. At least six load scenarios, defined as 0%, 25%, 50%,
75%, 100%, and 125% of the 2008 TP load, were used to build load–re-
sponse curves. In some cases, DRP load reductions were also evaluated.
Results and discussion

Load–response curves

Western Basin cyanobacteria summer biomass
The three models used to generate HAB response curves identified

P load from theMaumee River as themain driver of bloom size,with rel-
atively similar critical load periods across models (mid-February–June
for the Bayesian model; March–July for the other two models) (Fig. 2).

A peak 30-day average cyanobacteria biomass threshold of 9600MT
was selected to provide an illustrative comparison of the effectiveness
of load reductions (Table 2). This threshold was chosen because most
blooms perceived as “severe” since the early 2000s had satellite-
estimated peak 30-day mean bloom sizes N9600 MT.
Fig. 2. WB cyanobacteria bloom size predicted by three different models as a function of spring
Lake Erie HABmodel; c)Western Lake Erie EcosystemModel (WLEEM). Solid lines are meanm
a), 70% predictive intervals are also shown as reported in Stumpf et al. (2016-in this issue). In b),
themodels consider different spring loadperiods (see text),Maumee River load is reported asM
for “severe” blooms, which equals 9600MT for thefirst twomodels andwas adjusted to an equi
The corresponding March–July cumulative loads are reported in Table 2.
Differences in model inputs and outputs need to be taken in consid-
eration when comparing response curves. Because the models consid-
ered somewhat different loading periods, to facilitate comparisons,
spring load is expressed in the response curves as average monthly
load (Fig. 2). In addition, the models used different methods to
determine peak 30-day average cyanobacteria biomass. The satellite-
derived estimates of maximum 30-day average bloom size used by the
empirical models are calculated from consecutive 10-day composite
images, which are in turn obtained by summing the highest biomass
values observed at each pixel over each 10-day period (Stumpf et al.,
2012). WLEEM, on the other hand, simulates daily average basin-wide
cyanobacteria biomass, fromwhich themaximum30-daymoving aver-
age is calculated (Verhamme et al., 2016-in this issue). As a result, a
satellite-derived bloom size of 9600 MT corresponds to a lower
WLEEM-computed bloom size. To account for this, an adjustment was
made to convert the satellite-derived threshold of 9600 MT (Fig. 2a–b)
to a “WLEEM equivalent” of 7830 MT (Fig. 2c) (Verhamme et al., 2016-
in this issue).

The load–response curves indicate that spring Maumee River TP
load reductions below 180 MT/month (Stumpf et al., 2016-in this
Maumee River TP load: a) NOAAWestern Lake Erie HAB model; b) U-M/GLERL Western
odel predictions, while dashed lines and shaded area represent 95% predictive intervals. In
model predictions under 2008 (grey) and 2014 (black) lake conditions are shown. Because
T/month to facilitate comparison acrossmodels. Thehorizontal line indicates the threshold
valent of 7830MT for theWLEEMmodel (see text and Verhamme et al., 2016-in this issue).



Table 2
TP loads (MT) associated with example ERI thresholds. Annual Maumee River TP loads corresponding to the suggested March–July loads were calculated assuming the March–July load
represents on average53%of theannual load (data fromHeidelbergUniversity's National Center forWaterQuality Research,http://tinyurl.com/zgkberb). The correspondingWBannual loads
were calculated assuming theMaumee annual load represents on average 48% of thewholeWBannual load (Maccoux et al., 2016-in this issue).Thewhole lake annual loads corresponding to
the suggested hypoxia-related WB + CB loads were calculated assuming theWB+ CB load represents on average 88% of the whole lake load (Maccoux et al., 2016-in this issue).

Model Maumee March–July load
to achieve threshold

Maumee annual load
to achieve threshold

WB annual load to
achieve threshold

WB + CB annual load
to achieve threshold

Whole lake annual load
to achieve threshold

Loads to reduce Western Basin
UM/GLERL_2008 1150 2170 4520
NOAA 900 1698 3538
WLEEM 890 1679 3498
Mean ± st. dev. 980 ± 147 1849 ± 278 3852 ± 579

Loads to reduce Central Basin hypolimnetic dissolved oxygen to 4 mg/L
EcoLE_1–3 m 4400 5000
EcoLE_1m 2600 2955
ELCOM-CAEDYM 3100 3523
1D CB Hypoxia_WBconst 5100 5795
1D CB Hypoxia _WLEEM 4000 4545
Mean ± st. dev. 3840 ± 1001 4364 ± 1138

Loads to reduce Central Basin hypoxic area to 2000 km2

EcoLE_1–3 m 5955 6767
EcoLE_1m 3415 3881
ELCOM-CAEDYM 4920 5591
1D CB Hypoxia_WBconst 4830 5489
1D CB Hypoxia _WLEEM 3880 4409
Mean ± st. dev. *omitting 9- Box 4600 ± 989* 5227 ± 1124*

Loads to reduce Cladophora dry weight biomass to 30 g/m2

GLCM/ELCOM-CAEDYM See text

Fig. 3. Average summer chlorophyll-a concentration in the WB predicted by different
models as a function of annual WB TP loads. Each response curve has been scaled to
100% at its maximum chlorophyll value to facilitate comparisons. The dashed line
represents a 40% reduction from the 2008 WB annual load.
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issue), 178 MT/month (Verhamme et al., 2016-in this issue), and
230 MT/month (under 2008 conditions; Bertani et al., 2016-in this
issue) result in a mean bloom size below the selected threshold. These
monthly loads correspond to cumulative Maumee March–July loads of
890–1150 MT (mean ± st. dev. = 980 ± 147 MT) and to cumulative
Maumee annual loads of 1679–2170 MT (mean ± st. dev. = 1849 ±
278 MT) (Table 2).

The models generally agree that both the DRP and PP fractions of the
TP load need to be taken into consideration when setting HAB-related
load targets and that management strategies focused only on DRP will
not likely be sufficient to achieve target bloom sizes (Bertani et al.,
2016-in this issue; Verhamme et al., 2016-in this issue). WLEEM also
underscores the focus on the Maumee watershed when setting HAB-
related load targets (Verhamme et al., 2016-in this issue). Response
curves obtained by reducing the Maumee load vs. reducing loads from
all WB tributaries are very similar, indicating that load reduction from
the Maumee River is by far the most important. Their evaluation of
HAB response to Detroit River TP load reductions confirms the negligible
role that the Detroit River plays in bloom formation, although loads from
the Detroit River do influence other ecosystem properties such as TP,
DRP, and total chlorophyll levels in the WB (Verhamme et al., 2016-in
this issue), and CB hypoxia (see the “Central Basin hypoxia” section).

Basin-specific overall phytoplankton biomass
A recent long-term analysis of the trophic state of the Great Lakes

showed that average summer chlorophyll-a concentrations in the CB
and EB of Lake Erie rarely exceeded 2.5 μg/L over the past three decades
(Dove and Chapra, 2015), indicating that further decreases in summer
phytoplankton biomass in these two basins are not needed (Scavia
et al., 2016). Load–response curves for total chlorophyll are therefore
only presented for the WB, the most productive of the three basins
(Dove and Chapra, 2015). An analysis of the basin-specific TP concentra-
tions predicted by the Total Phosphorus Mass Balance model suggested
that a 40% reduction from the 2008 WB and CB loads would result in
a 25–30% decrease in average spring TP concentrations in each basin
(Chapra et al., 2016-in this issue; GLWQA, 2015), thereby most likely
preventing significant impacts on the basins' carrying capacity and
fish productivity (GLWQA, 2015; Scavia et al., 2016s).
Based on analysis of model performance, four models were judged
suitable for exploring the relationship betweenWB total phytoplankton
biomass and external TP loading (Fig. 3). Direct comparisons across
load–response curves are difficult because the models used different
averaging periods for reporting summermean chlorophyll-a concentra-
tions (Scavia et al., 2016). To facilitate comparisons, chlorophyll concen-
trations from eachmodelwere converted to a percent of the chlorophyll
value estimated for the highest load. All response curveswere plotted as
a function of WB loads (Fig. 3) because CB and EB loads have negligible
influence on phytoplankton growth in the WB. Whenever whole lake
loads were used in the original model application, they were converted
to corresponding WB loads based on the ratio of the 2008 WB load to
the whole lake load.

http://tinyurl.com/zgkberb
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These models span a broad range of modeling approaches and
complexity. For example, Chapra et al. (2016-in this issue) compute chlo-
rophyll concentrations by combining a parsimonious TP mass-balance
model with a relatively simple empirical relationship between August
chlorophyll and in-lake TP concentrations. On the other hand, the
ELCOM-CAEDYM, EcoLE, and WLEEM models simulate several complex
biophysical processes and multiple ecological drivers in addition to
P concentrations when predicting chlorophyll-a, and their results are av-
eraged over different summermonths (June–August for ELCOM-CAEDYM
and EcoLE, and July–September for WLEEM). The broad diversity in
model formulation, assumptions, and level of complexity provides insight
on the range of expected outcomes (Fig. 3). While no specific objective
was established for WB total phytoplankton biomass, it is instructive to
note that reducing loads to prevent significant HABs (Table 2)would like-
ly reduce total phytoplankton biomass by ca. 25% in the WB.

Central Basin hypoxia

The models used for this ERI were all calibrated and to varying ex-
tent confirmed over recent but different time periods, and are therefore
Fig. 4. CB hypoxiametrics predicted by different models as a function ofWB+ CB annual TP loa
line represents the average concentration (4mg/L) corresponding to initiation of statistically si
hypoxic area. The horizontal line indicates a threshold of 2000 km2; c) Number of hypoxic days
threshold of 2000 km2. Results for the EcoLE model are shown considering a bottom layer of 1
considering a constant net apparent TP deposition rate in the WB (1D Hypoxia_WBconst)
(1D Hypoxia_WLEEM).
good representations of the current state of the system. While most
models are vertically resolved into several layers that allow for a fine-
scale representation of seasonal variations in DO profiles, the 9-Box
model's 2-layer resolution makes comparisons difficult. For this reason,
the 9-Box model was not included in the composite recommendations.
The hypoxia response curves from each model were plotted as a func-
tion of the annual WB + CB TP loads (Fig. 4). When whole lake loads
were used in the original model application, they were converted to
WB + CB loads based on the ratio of the 2008 WB + CB load to the
whole lake load.

The response curves for August–September average hypolimnetic
DO concentration (Fig. 4a) show similar decreasing trends with in-
creasing loads. Some of the differences among models, especially
at lower loads, could be partly attributed to the fact that the 1-D
model simulates horizontally-averaged DO, while the other models
simulate horizontally-resolved DO concentrations in the bottom
layer (0.5–1.0 m for ELCOM-CAEDYM; 1.0 and 1–3 m for EcoLE).
Differences could also be attributed to different formulations of SOD,
which becomes more important at lower external loads. The 1-D
model (Rucinski et al., 2016-in this issue) also compared two different
d: a) August–September average hypolimnetic DO concentration in the CB. The horizontal
gnificant hypoxic areas (Zhou et al., 2013); b) August–September average extent of the CB
in the CB. The shaded area indicates the range of loads required to achieve the hypoxic area
m (EcoLE_1m) and 1–3 m (EcoLE_1–3 m). Results for the 1-D hypoxia model are shown
and considering TP loads from the WB to the CB as simulated by the WLEEM model
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approaches to estimate loads entering the CB from the WB. One meth-
od assumed a constant net apparent TP deposition rate previously es-
timated for the WB, whereas the alternative approach used nutrient
loads from the WB to the CB as simulated by WLEEM. A comparison of
the respective load–response curves shows that the two methods
yield similar results (Fig. 4).

There is strong convergence among models at more typical loading
rates (Fig. 4a). An example hypolimnetic DO concentration threshold
of 4.0 mg/L was selected to compare model predictions because, while
hypoxia is typically defined as DO below 2.0 mg/L, Zhou et al. (2013)
showed that statistically significant hypoxic areas start to occur when
average hypolimnetic water DO concentrations during the summer strat-
ified period are below approximately 4 mg/L. Using that as an example
target threshold, model predictions suggest reducing the WB + CB load
to below 2600–5100 MT (mean ± st. dev. = 3840 ± 1001; Table 2).

Themodelswere also used to relate loads to hypoxic area (areawith
DO concentration b2 mg/L). ELCOM-CAEDYM estimates this metric
directly through its fine-scale 3-D approach; the other two models use
the empirical relationship between hypoxic area and bottom-layer DO
concentration developed by Zhou et al. (2013). As expected, all models
show that hypoxic extent decreases with decreasing TP loads (Fig. 4b),
and suggest that decreasing the annual WB + CB TP load to 3415–
5955 MT (mean ± st. dev. = 4600 ± 989 MT) is needed to reduce the
average hypoxic extent to 2000 km2 (Fig. 4b and Table 2), a value typical
of themid-1990s that coincides with a period of recovery of several rec-
reational and commercial fisheries in Lake Erie's WB and CB (Ludsin
et al., 2001; Scavia et al., 2014).

The models also estimated the influence of load reductions on the
number of hypoxic days (number of days when average bottom water
DO is b2 mg/L) (Fig. 4c). The models indicate that a WB + CB TP load
below 3415–5955 MT/year would result in a decrease in the number
of hypoxic days to between 9 and 42 (Fig. 4c).

The 1-Dmodel simulated hypoxia response to load reductions under
the broad range of meteorological conditions observed between 1987
and 2005 (Rucinski et al., 2016-in this issue). Results indicate that the
response to load reductionsmay show substantial inter-annual variabil-
ity due to meteorological forces driving mixing regimes. These findings
are especially relevant in view of projected changes in future climate
conditions, which could result in substantial deviations in the lake's be-
havior from average model predictions. This uncertainty calls for an
adaptive management approach, where the system's response to load
reductions is assessed over time andnewknowledge is used to regularly
updatemodels andmanagement strategies. Rucinski et al. (2016-in this
issue, 2014) also showed that variations in the lake's thermal structure
produced far more inter-annual variability in hypoxic area than varia-
tions in the timing, or seasonality, of the load.

Eastern Basin Cladophora
For this ERI, the Great Lakes Cladophora Model (Canale and Auer,

1982; Tomlinson et al., 2010) met the criteria required for inclusion in
this effort, andwhile initial results were not used for setting loading tar-
gets (see below), it did provide a preliminary estimate. Subsequently,
additional site-specific modeling efforts have begun for this portion of
the lake, and one of them, a three dimensional hydrodynamic-water
quality model by Valipour et al. (2016-in this issue) is presented in
this special series.

For Annex 4 work (see Scavia et al., 2016), the Great Lakes
Cladophora model relating algal biomass to EB DRP concentrations, an
empirical model relating DRP to TP concentrations (Dove and Chapra,
2015), and the Total Phosphorus Mass Balance Model (Chapra et al.,
2016-in this issue) relating TP concentrations to external TP loads
were combined to generate a Cladophora biomass-TP load–response
curve. Since there is currently no regulatory guidance on acceptable
levels of Cladophora biomass, a biomass of 30 g dry weight (DW)/m2

was suggested as a threshold likely to prevent nuisance conditions
(Scavia et al., 2016), and that corresponds to DRP and TP concentrations
of 0.9 μg P/L and 6.3 μg P/L, respectively, or a whole-lake TP load below
7000 MT/Year. It is important to note that this combined modeling
approach was used because of time, resource, and data limitations,
and it is not site-specific; but rather relates Cladophora biomass along
the entire north shoreline of the EB to average offshore nutrient concen-
trations. However, Cladophora proliferates in the nearshore, where it is
often subjected to direct impacts of point-source and tributary inputs.
Nutrient concentrations in the nearshore waters may therefore be
higher and more variable than those in the offshore, and as offshore
DRP concentrations are reduced, control of Cladophora growth is ex-
pected to shift toward nearshore inputs, requiring spatially explicit
models.

Some of these limitations were recently addressed by Valipour et al.
(2016-in this issue). Their 3-Dmodel simulated the predominant phys-
ical processes within the Cladophora habitat zone (0–8 m depth) in the
EB of Lake Erie, with a focus on the northern coast in the vicinity of the
Grand River where Cladophora is abundant. Model output was input to
the Higgins Cladophora Growth Model (CGM) (Higgins et al., 2006) to
relate nearshore Cladophora biomass to external phosphorus loads. Re-
sults showed that while P load reductions can be expected to reduce
Cladophora biomass in the EB, achieving proposed biomass thresholds
may be more challenging than previously thought (Fig. 5). Coastal
upwelling events often input significant nutrients along much of the
north shore, particularly during May and June when conditions are op-
timal for Cladophora growth. Simulations confirmed that P supplies
from both the offshore and local sources (e.g. the Grand River) are capa-
ble of generating biomass above the proposed threshold in the vicinity
of the Grand River. The relative importance of offshore-nearshore nutri-
ent exchanges vs. local tributary inputs in driving nearshore P concen-
trations and Cladophora growth varies within and across years, most
likely resulting in substantial variability in Cladophora response as
whole lake loads are reduced. Generally, these results indicate thatmea-
sures aimed at decreasing Cladophora biomass in the EB of Lake Erie
should take into account nutrient sources from both the offshore region
and local tributary inputs (Valipour et al., 2016-in this issue). These re-
sults also point to a need for an adaptive management plan for Eastern
Basin Cladophora that includes research, monitoring, and modeling.

Benefits of the multi-model approach and future research needs

Although the models vary substantially in formulations, assump-
tions, and parameterizations, the load–response curves generally
showed considerable agreement, providing confidence in the robust-
ness of the recommendations. However, quantifying each model's
uncertainty explicitly would have further enhanced confidence (Kim
et al., 2014). While such quantification is easily accommodated in
some models, it is much more difficult, if even possible, for others. The
HAB models provide an example. They range from a parsimonious em-
pirical Bayesian hierarchical model capable of accounting quantitatively
for model error, bloommeasurement error, and uncertainty in parame-
ter estimates to a complex process-based deterministic model that
provides model uncertainty in terms of quantitative comparisons of
simulations and field observations for all years simulated, but is too
complex and runtime consuming for a full Monte Carlo uncertainty
analysis. While this illustrates a trade-off between providing causal
understanding of ecosystembehavior and rigorously quantifying uncer-
tainty, it also highlights oneof the benefits of themulti-model approach.
In that approach, the range of predicted outcomes illustrates the degree
of confidence in our understanding of, and the predictability of, the
system's response to loads.

The thorough representation of uncertainty possible with the statis-
tical models also helps identify key scientific gaps limiting our predic-
tive understanding of the system's behavior and can guide future
experimental and monitoring efforts. For example, including multiple
independent sets of bloom observations in the Bayesianmodel suggests
that uncertainty associated with bloom characterization represents a



Fig. 5. Cladophora biomass predicted by the CladophoraGrowthModel coupledwith the 3-D ELCOM-CAEDYMmodel in the northern shoreline of the EB as a function ofwhole lake annual
TP load. Load–response curves were developed for two years (2008 and 2013) and at various depth ranges (a–e). For each year and depth range, spatially averagedmaximum Cladophora
biomass and associated 5th and 95th percentiles are shown.
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considerable portion of overall HAB predictive uncertainty (Bertani
et al., 2016-in this issue). More generally, the relatively large uncertain-
ty in HAB predictions highlights once again the need for adaptive man-
agement approaches that track the effectiveness of actions and
routinely revisemodels andmanagement decisions based on new infor-
mation— a point also emphasized in the analysis of variability associat-
ed with meteorology in the 1D hypoxia model (Rucinski et al., 2016-in
this issue).
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In the case of hypoxia, a key source of uncertainty is quantifying the
impact of changes in external loads on SOD. Previous studies have
shown that SOD represents a substantial portion of total hypolimnetic
oxygen demand in the CB (Rucinski et al., 2014), and both SOD and
water column oxygen demand are affected by external loads. The hyp-
oxia models used similar approaches to approximate the potential ef-
fects of changes in nutrient loads on future SOD. Rucinski et al. (2016-
in this issue) coupled a relationship between SOD and organic carbon
sedimentation rates (Borsuk et al., 2001) with a relationship between
P loading and carbon settling from his model to predict future SOD as
a function of P loads (Rucinski et al., 2014). Bocaniov et al. (2016-in
this issue) and Zhang et al. (2016-in this issue) used the relationship de-
veloped by Rucinski et al. (2014), but allowed for adjustments to tem-
perature and bottom water DO concentrations. These approaches
represent our best available estimates of how SOD rates may change
as a function of nutrient loads. However, future research should focus
on developing long-term measurement and modeling approaches that
can improve our understanding of how SOD and benthic nutrient fluxes
will change as a result of external load reductions and how accumula-
tion of nutrients and organic matter in the sediments may delay the
system's response to load reductions.

Valuable insight on critical research gaps can also be gained by ex-
ploring discrepancies among the models. For example, comparison of
the HAB models suggests that quantifying the contribution of the PP
component of the TP load in fueling HABs remains a critical challenge.
Numerous studies have quantified the algal availability of PP in the
Maumee River (see review in Bertani et al., 2016-in this issue; DePinto
et al., 1981; Young et al., 1985), and this knowledge has been incorpo-
rated in all three HAB models through various approaches. However,
we still have limited observational knowledge of the ultimate fate of
PP as it is delivered to the lake and undergoes processes that influence
its bioavailability, including settling, re-suspension, microbial minerali-
zation, and re-cycling by dreissenid mussels and other organisms.
Stumpf et al. (2016-in this issue) explicitly account for the proportion
of theMaumee PP load that is assumed to settle out of thewater column
before reaching the WB open waters based on a recent field study
(Baker et al., 2014b). However, field studies exploring nutrient trans-
port dynamics along the river-lake continuum in western Lake Erie
are sparse, and more research is needed to quantify physical processes
controlling the ultimate fate of riverine nutrients. The 3-D mechanistic
models (e.g., Bocaniov et al., 2016-in this issue; Verhamme et al.,
2016-in this issue; Zhang et al., 2016-in this issue) attempt to explicitly
characterize nutrient transport, in-lake dynamics of bioavailable P and
kinetic conversions among P forms (e.g., mineralization of organic P to
orthophosphate, gradient-driven desorption of orthophosphate from
inorganic PP). However, additional measurements of in situ biophysical
processes in both thewater column and sediments that can further con-
strain the models will help reduce uncertainties.

Integrating results from different modeling approaches also allows
for exploring processes occurring at different spatio-temporal scales.
For example, while the process-based HAB model provides key insight
into fine scale bloom spatio-temporal dynamics and underlyingmecha-
nisms, the empirical models allow for assessment of system responses
at longer time scales. For example, the Bayesian model includes a tem-
poral component that suggests increased susceptibility of western
Lake Erie to bloom formation over time, suggesting the same TP load
is predicted to trigger a larger bloom under present-day conditions
compared to earlier years (Fig. 2b). Specifically, the model predicts
that under 2008 lake conditions, March–June Maumee TP loads below
230 MT/mo will prevent severe blooms, while under 2014 conditions
a TP load of 230 MT/month would still result in an average bloom size
of 28,000 MT (95% predictive interval: 17,000–38,000 MT) (Fig. 2b).
This temporal trend term, estimated by the Bayesian model, remains
significantly positive even after accounting for concurrent increases in
DRP loads, suggesting that the observed increase in DRP load alone
may not be sufficient to explain the apparent enhanced susceptibility.
However, results from the other empirical model do not support these
findings. They suggest that removing the influence of the July load for
relatively cold years prevents under prediction of some of the most re-
cent blooms (Stumpf et al., 2016-in this issue). Further research is need-
ed to assess whether the lake is becoming more susceptible to bloom
formation and, if so, to identify underlying mechanisms, including the
role of changes in frequency,magnitude, and timingof extremeweather
events (Michalak et al., 2013), the potential impact of selective grazing
and nutrient excretion by dreissenid mussels (Arnott and Vanni, 1996;
Conroy et al., 2005; Jiang et al., 2015; Vanderploeg et al., 2001; Zhang
et al., 2011), the influence of internal loading of both nutrients and
cyanobacteria cell inocula (Chaffin et al., 2014b; Rinta-Kanto et al.,
2009), the role of nitrogen co-limitation (Chaffin et al., 2014a, 2013;
Harke et al., 2015), and the influence of changes in the proportion of
available vs. non-available fractions of the TP load (Baker et al., 2014a;
Kane et al., 2014).

Conclusions

The load–response curves presented herein represent our current
best estimates of how Lake Erie's ERI metrics will respond to changes
in P loads, with the loadings necessary to achieve the example thresh-
olds summarized in Table 2. Results of this multi-model approach
suggest:

• Achieving Western Basin cyanobacteria biomass reduction requires
a focus on reducing TP loading from the Maumee River, with an em-
phasis on high-flow events during March–July. Results suggest that
focusing on Maumee DRP load alone will not be sufficient and that
P load from the Detroit River is not a driver of cyanobacteria blooms.

• Reducing Central Basin hypoxia requires a Central + Western Basin
annual load reduction greater than what is needed to reach the
Western Basin cyanobacteria biomass goal. Load reductions focused
on dissolved oxygen concentration and hypoxic areal extent also
result in shorter hypoxia duration.

• While the original Annex 4 analysis indicated that the load reductions
suggested for meeting the cyanobacteria and Central Basin hypoxia
thresholds would be sufficient to meet the Eastern Basin Cladophora
biomass goal, more recent work (Valipour et al., 2016-in this issue)
does not support this conclusion.

These results offered several strategies for setting loading targets
under the GLWQA. The thresholds in Table 2 were intended to illustrate
the range of load reductions likely needed. They were used by the
Objectives and Targets Task Team in their recommendations to the
GLWQA Nutrient Annex Subcommittee on loading targets (GLWQA,
2015). Their recommendations, in the context of our findings, were:

• Western Basin Cyanobacteria — To keep blooms below 9600 MT algal
dry weight (the size of the blooms observed in 2004 or 2012) 90% of
the time, the Task Team recommended a Maumee River March–July
TP load of 860MT and a DRP load of 186MT, consistent with our find-
ings. These loads represent roughly 40% reductions from the 2008
spring loads and correspond to Flow Weighted Mean Concentrations
(FWMC) of 0.23 mg/L TP and 0.05 mg/L DRP. FWMC was included in
the Task Team recommendation to address significant inter-annual
variability in Maumee River discharge. It is expected that maintaining
those concentrations will result in loads below the targets 90% of the
time, if climate change does not alter precipitation patterns. It was
also noted that, while reducing DRP will have a greater impact than
reducing PP, reducing DRP alone will not be sufficient. The Task
Team also recommended 40% reductions for all other WB tributaries
and the Thames River.

• Central Basin Hypoxia — Our analysis suggested that setting a mini-
mum summer average hypolimnetic DO concentration of 4 mg/L
or reducing hypoxia area to less than 2000 km2 requires average
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WB + CB loads of 3840 MT and 4600 MT, respectively (Table 2). The
Task Team believed the load reduction to keep summer hypolimnetic
DO concentrations at or above 4 mg/L was so restrictive that it might
reduce overall productivity and impact fisheries, so they recom-
mended an annual WB + CB TP loading target of 6000 MT, closer
to our area-reduction example and expected tomaintain summer hy-
polimnion DO concentrations above 2 mg/L. This load represents a
40% reduction from 2008 WB + CB load levels.

• Eastern Basin Cladophora — While the original Annex 4 analysis sug-
gests that the cyanobacteria- and hypoxia-driven load targets are
sufficient to achieve a desired reduction in Cladophora in the EB, the
Task Team was not sufficiently confident in the cascade of models
used to set a loading target for Cladophora (Task Team, 2015). They
pointed to the need to develop a site-specific model for the north
shore of the EB that accounts for nutrient exchanges with the open
water, load and transport of specific tributaries, and the role of
dreissenids to gain more confidence. A spatially-explicit modeling ef-
fort was recently developed to address some of these issues (Valipour
et al., 2016-in this issue). This work indicates that reducing nearshore
Cladophora biomassmaybemore challenging thanpreviously thought,
and more research is needed to develop sound recommendations
to address Cladophora growth in Lake Erie.
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