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1. Overall modeling framework schematic  

 

Figure S1. Conceptualization of the modeling framework used to reconstruct past bottom 
hypoxia extent, quantify threshold relationships between hypoxia and fisheries harvests, and 
project the anticipated effects of nutrient abatement and climate change on water quality and 
fishery yields in Lake Erie. 
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2. Hypoxia model development and supplemental hypoxia figures 

Model testing - We tested the influence of several total phosphorus (TP) loading and air 
temperature intervals on bottom hypoxia. Del Giudice et al. (2018) reported a best fit using mean 
March-April air temperature and the cumulative tributary load from the previous 9 years. Using a 
similar model with our longer data record (that for the first time included the Detroit River), we 
also found that March-April mean air temperature and the cumulative TP load best predicted 
hypoxic extent. However, our model showed that loads from the previous 6 years plus October-
May in the current year provided the best fit (Figure S2). 

 

We developed a Bayesian linear multiple regression model using the rstanarm package in R with 
Stan, as described in the main text. The model uses the previous years’ cumulative TP load and 
the current year’s March-April average temperature to predict the annual hypoxic area. Bayesian 
parameter estimation was conducted using four MCMC chains with 2,000 iterations, and the first 
1,000 iterations being discarded as burn-in. All the model coefficients (parameters) reach 
convergence with an Rhat (potential scale reduction factor) smaller than 1.1. The tables below 
report the prior and posterior distributions for each coefficient. 

 

 

 

 

 

Figure S2. Comparison of R2 values for the hypoxia model using 
different numbers of years in calculating the cumulative TP load to the 
central basin of Lake Erie.  
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Prior distributions for model coefficients 

Coefficient Distribution Setting 
Intercept Normal Location = 5.9, Scale = 3.3 
March-April average temperature Normal Location = 0.7, Scale = 0.16 
Cumulative TP load Normal Location = 0.0007, Scale = 0.00005 
Sigma Exponential Rate = 0.3 

 

Posterior distributions for model coefficients 

 

 

Figure S3. Bayesian hypoxia predictions versus phosphorus load in Lake Erie, 1959-2022. The 
95% prediction intervals (gray dashed) and 60% prediction intervals (grey solid) are shown. 
Observed hypoxic areas are shown as black dots. Note that 1975, an outlier year (Figure 2) was 
removed from this model because the thermocline in 1975 was unusually shallow (DiToro et al, 
1987; Rosa and Burns, 1987), which resulted in an exceptionally large hypolimnetic volume and 
dissolved oxygen mass. Instead of arbitrarily correcting for the larger volume to make the 1975 
DO deletion rate consistent with other years, as in these other studies, removed the outlier. 

  

Variable Mean Median SD 5th 
Percentile  

95th 
Percentile 

Rhat 

Intercept -4.24 -4.26 0.63 -5.27 -3.18 1.00 
March-April 
average temperature 

0.71 0.71 0.11 0.52 0.89 1.00 

Cumulative TP load 0.000698 0.000698 0.000037 0.000636 0.000757 1.00 
Sigma 1.58 1.56 0.17 1.32 1.88 1.00 
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Figure S5. Relationship between 1985-2022 hypoxic area and average March-April air 
temperature. The 1993-1997 data points are circled to identify a period of very low air 
temperature. 

  

Figure S4. Total (grey), Detroit River (yellow), and tributary (blue) 
6-year cumulative load, 1967-2020. 
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3. Fisheries threshold determination 

 

Figure S6. Results from two-dimensional Kolmogorov-Smirnov tests (Garvey et al., 1998) used 
to identify threshold relationships between Lake Whitefish (top panels), Walleye (middle 
panels), and Yellow Perch (bottom panels) commercial harvests and either hypoxia extent (5-
year running means; left panels) or cumulative (6-year) total phosphorus loads (5-year-running 
means; right panels) during 1932-2020. Portrayed in each panel are observed data, all significant 
thresholds (p < 0.05) identified for every possible combination of the randomized data, and the 
range of the significant thresholds identified across all runs. Significance of each threshold 
identified in each randomization was determined by comparing the D value for that 
randomization against a null distribution of D values determined from 5,000 rerandomizations of 
the data. Randomizations were used to also determine 95% confidence intervals reported in the 
main text. Note: Fisheries harvest data are from the Great Lakes Fisheries Commission 
(http://www.glfc.org)  

http://www.glfc.org/
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4. Temperature anomalies and variation in hypoxic thickness, extent, and duration 

 

Figure S7. a) March-April air temperature anomalies (°C); b) October water (red) and air (green) 
temperature anomalies (°C) at NDBC buoy and lake-averaged air temperature anomalies (°C) 
(black); c) hypoxic layer thickness; and d) hypoxic extent at beginning and ending of hypoxic 
season. July (black) and October (red).  
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5. Future air temperature projections from CMIP6 

Future air temperature was projected using data from the Coupled Model Intercomparison 
Project Phase 6 (CMIP6). We employed spatially downscaled air temperatures sourced from the 
NEX-GDDP-CMIP6 dataset (Thrasher et al., 2022), which utilized the bias correction/spatial 
disaggregation (BCSD) method to downscale the original global climate model output to a 0.25° 
resolution on a daily timescale. For the Lake Erie watershed, we specifically selected 15 models 
from the NEX-GDDP-CMIP6 dataset (table below). This selection process prioritized climate 
models with an Earth System module when multiple models were available from a modeling 
center (e.g., GFDL-ESM4 from GFDL). 

To account for future socioeconomic pathway uncertainties, we considered three Shared 
Socioeconomic Pathway (SSP) and emission scenarios: SSP1-2.6 "Sustainability," SSP2-4.5 
"Middle-of-the-road," and SSP5-8.5 "Fossil-fueled-development." The air temperature 
differences among these three scenarios are attributed to differing greenhouse gas emissions 
levels as per projected climate policies. 

We computed the daily average temperature for the entirety of the Lake Erie watershed by 
averaging the intersecting 0.25° resolution grids (Figure S8). Subsequently, we calculated the 
average air temperatures for March and April during for the historical period (1950-2014, as 
defined by CMIP6) and for the future scenarios (2015-2099). To assess long-term impacts of air 
temperature on hypoxia, we selected 2030-2059 to represent the mid-century and 2070-2099 to 
represent the late century. 

Model name Modeling center Nominal 
resolution 

ACCESS- ESM1-5 Commonwealth Scientific and Industrial Research Organisation, 
Australia 

1.250°x1.875° 

BCC-CSM2-MR Beijing Climate Center, China Meteorological Administration, China 1.125°x1.125° 
CanESM5 Canadian Centre for Climate Modelling and Analysis, Canada 2.813°x2.813° 
CNRM-ESM2-1 Center National de Recherches Météorologiques–Center Européen 

de Recherche et de Formation Avancée en Calcul Scientifique, 
France 

1.406°x1.406° 

GFDL-ESM4 NOAA/Geophysical Fluid Dynamics Laboratory, USA 1.000°x1.250° 
HadGEM3- GC31-LL Met Office Hadley Center, United Kingdom 1.250°x1.875° 
IITM-ESM Centre for Climate Change Research-Indian Institute of Tropical 

Meteorology, India 
1.915°x1.875° 

INM-CM5-0 Institute for Numerical Mathematics, Russia 1.500°x2.000° 
IPSL-CM6A-LR L'Institut Pierre-Simon Laplace, France 1.259°x2.500° 
KACE-1-0-G National Institute of Meteorological Sciences-Korea Meteorological 

Administration, South Korea 
1.250°x1.875° 

MIROC-ES2L Model for Interdisciplinary Research on Climate, Japan 2.813°x2.813° 
MPI-ESM1-2- HR German Climate Computing Centre, Germany 0.938°x0.938° 
MRI-ESM2-0 Meteorological Research Institute, Japan 1.125°x1.125° 
NESM3 Nanjing University of Information Science and Technology, China 1.875°x1.875° 
UKESM1-0-LL Met Office Hadley Center, United Kingdom 1.250°x1.875° 
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Lake Erie watershed and 0.25° climate model grids from the NEX-GDDP-CMIP6 dataset. 

 

 

Figure S8. Vertical black lines represent current (solid), mid-century (dashed), and late-century 
(dotted) conditions for the SSP1-2.6 (black) and SSP5-8.5 (red) scenarios. Mean predicted 
hypoxic extent (black) and upper and lower 60% confidence intervals (grey) for the 2008 loads. 
Percent reduction from 2008 required to reach the 4,000 km2 hypoxia target (blue).  
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6. Exploration of potential confounding factors of historical variation in fishery harvests 

General Overview 

The possibility exists that factors besides bottom hypoxia could have driven changes in 
commercial fishery harvest. The most conspicuous factors include temperature variation (e.g., 
warming), invasive species (e.g., dreissenid mussels, Rainbow Smelt Osmerus mordax, Sea 
Lamprey Petromyzon marinus), and altered regulations on commercial harvest. Below we detail 
the approach we used to explore the potential for these factors to influence commercial harvest 
of Lake Whitefish, Walleye, and Yellow Perch. While these additional analyses show that other 
factors like temperature variation and invasive species appear to have influenced commercial 
harvest levels, they also support our primary conclusions regarding the impact of hypoxia on 
commercial harvest. Simply, after accounting for effects of temperature variation and Rainbow 
Smelt (for all three species), as well as Sea Lamprey (in the case of Lake Whitefish), the hypoxia 
signal and its associated thresholds remain clear and strong, with hypoxia’s importance 
becoming clearer for Yellow Perch. 

Potential Confounding Factors 

Lake Erie has been a highly dynamic ecosystem, owing in large part to human-driven 
environmental change ( Hartman, 1972; Fraker et al., 2022; Sinclair et al., 2023). In addition to 
changes in nutrient availability and associated bottom hypoxia, which is the main focus of this 
paper, ecosystem change has occurred from the effects of human-driven climate change (e.g., 
increased warming and springtime precipitation; Farmer et al., 2015; Zhang et al., 2020), the 
establishment of nuisance invertebrate (e.g., Dreissena mussels, predatory zooplankton; Bur et 
al., 1986; Dermott and Munawar, 1993) and vertebrate (e.g., White Perch Morone americana, 
Sea Lamprey; Lawrie, 1970; Schaeffer and Margraf, 1986) species, and commercial fishery 
exploitation (Hartman, 1972). Thus, the potential that other factors might be responsible for the 
observed variation in commercial harvest exists. 

Fortunately, a rich literature exists on the impacts of these stressors, which allowed us to 
determine the timeline of their potential influence on commercial fishery landings. This existing 
literature helped us eliminate many factors as potential drivers of commercial harvest for all 
three focal species, reducing the list of potential confounding factors that we needed to explore 
with quantitative approaches herein. For example, the invasion of invertebrate species, including 
both dreissenid mussels (zebra mussel Dreissena polymorpha and D. bugensis; circa 1988) and 
predatory zooplankton (the spiny water fleas Bythotrephes longimanus and Cercopagis pengoi; 
circa 1985 and 2001, respectively), and the establishment of a large population of White Perch 
(circa 1982-1986), occurred too late in our time-series to have been considered as drivers of the 
noteworthy reductions in commercial harvest that occurred during the 1950s to 1970s. Thus, we 
did not explore their impacts any further for any of our focal fishes. Furthermore, while Sea 
Lamprey are known to prey on Lake Whitefish (Coldwater Task Group, 2024), we also know 
that Sea Lamprey rarely (if at all) prey on Walleye or Yellow Perch (personal communications 
and unpublished data from: Andy Cook and Tom MacDougall, Ontario Ministry of Natural 
Resources and Forestry; Ann Marie Gorman, Travis Hartman, Carey Knight, and Eric Weimer, 
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Ohio Department of Natural Resources; Jason Robinson, New York State Department of 
Environmental Conservation). Thus, we only explored the impacts of Sea Lamprey on Lake 
Whitefish commercial fishery landings.  

Rainbow Smelt can prey on the larvae of Lake Whitefish (Gorsky and Zydlewski, 2013), may 
compete with Yellow Perch for prey (Hrabik et al., 1998), and is a known prey item for juvenile 
and adult Walleye in Lake Erie (Forage Task Group, 2024; Knight and Vondracek, 1993). Thus, 
fluctuations in Rainbow Smelt abundance could potentially influence commercial harvests and 
potentially mask the effect of hypoxia, given that previous research has shown Rainbow Smelt to 
be negatively affected by hypoxia as well (Stone et al., 2020).  

Methods 

General overview. While most invasive species were eliminated as potential drivers of Lake 
Whitefish, Walleye, and Yellow Perch commercial landings, owing to their recent establishment 
in the lake, we still needed to consider:  

1) Temperature variation on all three species, given Lake Erie’s warming climate and its 
potential to negatively influence all three species (Collingsworth et al., 2017; Dippold et 
al., 2020; Farmer et al., 2015),  

2) Sea Lamprey on Lake Whitefish.  

3) Rainbow Smelt on all three species.  

Unfortunately, time-series data for the potentially confounding factors do not exist as far back as 
our hypoxia and commercial fishing records. To overcome this limitation, we compared the 
relationships between hypoxia and commercial landings of all three species during the entire 
time-series (1932-2020, as presented in the main text) with those found during shorter time 
stanzas (1952-2020 and 1984-2020), accounting for effects of these other potential confounding 
factors as data permitted. If other factors were more important than hypoxia, or the nature (e.g., 
shape, threshold values) of the relationship between hypoxia and fisheries harvest varied 
between time stanzas, our comparative temporal analysis should reveal it (Fraker et al., 2022). 

Generalized additive modeling. We quantified the relationship between hypoxia and commercial 
harvest of all three species using generalized additive models (GAMs; Hastie and Tibshirani, 
1987), which allowed us to account for the partial effects of other factors, including temperature 
variation, Rainbow Smelt, and Sea Lamprey (in the case of Lake Whitefish). While the influence 
of temperature was included in all analyses, we only could include Rainbow Smet in the two 
shorter time periods (1952-2020 and 1984-2020; data did not exist before then), with Sea 
Lamprey only explored in the 1984-2020 models because Sea Lamprey abundance was not 
indexed until the early 1980s. Prior to this time, however, Lake Erie’s Sea Lamprey population 
was considered small until phosphorus abatement programs implemented during the early 1970s 
improved water quality during the early 1980s, and in turn Sea Lamprey spawning habitat 
(Lawrie, 1970; Ludsin et al. 2001; Makarewicz and Betram 1993;). Inherently then, the low 
abundance of Sea Lamprey prior to the 1980s rules out this species’ role in driving declines in 
commercial harvest observed during the 1950s for Lake Whitefish.  
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We conducted our GAMs in Statistica (ver. 13.5.0.17, TIBCO Software Inc, Santa Clara, CA) 
using a Poisson distribution and log-link function, given the skewed nature of our catch data. To 
minimize overfitting models, we explored the impact of allowing our models to “wiggle” by 
altering our degrees of freedom (i.e., knots) from 2-4. We found that the models with 2 degrees 
of freedom captured the nature of the relationships between all variables without sacrificing 
much in terms of the amount of variation in commercial landings explained. 

Predictor datasets. The predictor data for this modeling emanated from multiple sources. 
Rainbow Smelt data came from the same commercial fishery landings dataset as our focal 
species (GLFC, 2022). The temperature data were provided by the University of Michigan’s 
GLISA program (https://glisa.umich.edu/), which were modeled back to 1948. Because historical 
water temperature do not exist lakewide, we used modeled monthly lakewide air temperature 
data, which other Lake Erie research has shown to sufficiently capture variation in water 
temperature (Dippold et al. 2020). We conducted preliminary analyses to explore relationships 
among average monthly temperatures. Finding all seasons to be strongly correlated with the 
annual mean temperature (S. Ludsin, unpublished data), we used annual mean temperature as a 
predictor. The Sea Lamprey data came from an assessment of lakewide Sea Lamprey population 
size (Robinson et al., 2021; Coldwater Task Group, 2024). The first assessments were made in 
1980.  

The annual commercial harvest of all three species capture a range of ages individuals 
(Coldwater Task Group, 2024; Walleye Task Group, 2024; Yellow Perch Task Group, 2024). 
Thus, it is unlikely that any annual habitat feature (predictor in our GAM) would maximally 
explain commercial landings in that year, and concomitantly, we would expect habitat conditions 
in the several years prior to be a better predictor of harvest. Thus, we averaged the values of our 
predictors in our GAMs over a 5-year period, which produced near identical results of similar 
analyses conducted with averages over short durations (S. Ludsin, unpublished data). A 5-year 
window also seemed appropriate because age-5 fish are typically a major portion of the 
commercial harvest for all three species (Coldwater Task Group, 2024; Walleye Task Group, 
2024; Yellow Perch Task Group, 2024). Thus, for all predictors, we only included years in which 
a full 5-years of data could be averaged together. 

Results & Discussion 

Lake Whitefish. Our GAM supports our primary conclusion that hypoxia has played a key role in 
driving variation in commercial harvests of Lake Whitefish and Walleye, with a new-found 
dependence seen for Yellow Perch. For Lake Whitefish analyses across all three time periods 
(1932-2020, 1952-2020, and 1984-2020), consistent relationships between hypoxia and harvest 
were found, indicating a negative effect (Table S1; Figure S9-14). Even after accounting for the 
partial effects of temperature (1932-2020), temperature and rainbow smelt (1952-2020), and 
temperature, Rainbow Smelt, and Sea Lamprey (1984-2020), hypoxia explained a significant 
amount of the variation in commercial harvest levels for Lake Whitefish. The relationship 
between hypoxia and Lake Whitefish harvest was nonlinear, with harvest rates generally 
declining when hypoxia levels exceeded ~5,000 km2. Thus, while increased temperatures and 
reduced populations of Rainbow Smelt and Sea Lamprey all appear to positively influence Lake 

https://glisa.umich.edu/
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Whitefish commercial landings, significant effects of hypoxia were observed. Lake Whitefish 
harvest peaked at intermediate levels of nutrient-driven hypoxia that align with the threshold 
values presented in our primary analyses (see Figure 4 in the main text). 

Walleye. The GAMs for Walleye allowed us to draw a similar conclusion as for Lake Whitefish. 
After removing the partial effects of temperature and Rainbow Smelt (positive effect), hypoxia 
was still found to be strongly, significantly related to Walleye commercial fishery landings 
(Figures S9-S13, S15). The relationship between hypoxia and Walleye harvest, while non-linear, 
was less hump-shaped (unimodal) than that for Lake Whitefish (Table S1; Figures S9-S15). 
Regardless of the time period, a negative effect of hypoxia on Walleye harvest was found, with 
the hypoxia decline in the same range that we observed in our 2dKS modeling (see Figure 4 in 
the main text). Thus, we feel confident asserting that hypoxia has influenced Walleye harvests.  

Yellow Perch. Our 2dKS analysis of the linkage between hypoxia and Yellow Perch showed no 
apparent negative effect of hypoxia on commercial harvests (Figure 4 in the main text). GAMs 
indicate a positive relationship, which we attributed to bottom-up effects between nutrient inputs 
and Yellow Perch production, given that hypoxia and nutrients are highly correlated. 
Interestingly, however, our GAMs also revealed a non-linear relationship between hypoxia and 
Yellow Perch commercial harvest, with harvest rates being maximal in the range of 
approximately 7,000 to 9,000 km2 and declining modestly thereafter (Figure S9-S13). This 
higher threshold value of hypoxia relative to Lake Whitefish and Walleye meshes well with our 
expected understanding of how hypoxia should influence fisheries production in general (Caddy, 
1993) and our understanding of species-specific tolerances of hypoxia (Colby et al., 1972; 
Ludsin et al., 2001; Oglesby, 1977; Sinclair et al., 2023). Importantly, this relationship still 
existed even after accounting for the apparent negative influence of warming and Rainbow Smelt 
on Yellow Perch landings (Table S1).  

Conclusions. The results of this supplemental modeling supports our conclusion that variation in 
bottom hypoxia has been the key factor driving variation in commercial harvest of Lake 
Whitefish, Walleye, and Yellow Perch over the long-term. While our GAMs also showed other 
stressors to be important drivers of fisheries harvest, including climate variation and invasive 
Rainbow Smelt for all three species and Sea Lamprey for Lake Whitefish (likely through 
predatory effects), the hypoxia signal remained clear (or became clearer in the case of Yellow 
Perch), regardless of the temporal scope of analysis. Furthermore, while temperature and 
invasive species may explain episodic/short-term historical variability in the fisheries landings, 
hypoxia uniquely explains the major, long-term patterns illustrated in Figure 3 (main text), 
significantly shaping fisheries harvests during Lake Erie’s first bout of eutrophication during the 
1950s-1970s and its more recent one.  
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Table S1. Summary of generalized additive modeling (GAM) results designed to explore the importance of bottom hypoxia, 
temperature variation, and invasive rainbow smelt and sea lamprey on commercial harvests of lake whitefish, Walleye, and Yellow 
Perch in Lake Erie during three time periods with differing data availability (1932-2020, 1952-2020, and 1984-2020). For each of 
these three time periods, a GAM was built with hypoxia as the sole predictor and then again with hypoxia and other potential drivers 
of change. Rainbow smelt data were only available for 1952-2020, whereas sea lamprey data were only available from 1984-2020. 
The shape of the best fit spline curve for each variable in each model is provided (traced from plots shown in Figure GAM S9-S16), as 
is a general description of that curve’s relationship based on the plot and coefficient (negative, positive, or hump-shaped). 
Standardized beta coefficients or beta weights (Std. Score), which were calculated by dividing each estimated predictor variable 
coefficient divided by its standard deviation are presented to allow relative influence of each variable in the model to be more easily 
assessed. Doing so is necessary as the measurement units for predictor variables in any given model differed. Coefficients of 
determination (R2) values are provided for all models. Note that all coefficients presented were statistically significant (all P < 
0.0001). 
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Figure S9. Generalized additive modeling splines with 95% confidence intervals between Lake Whitefish (left), Walleye (middle), and 
Yellow Perch (right) commercial harvest and the 5-year moving average of modeled annual hypoxia extent, 1932-2020. No other 
predictors were included in these models. The years 1970-1972 were removed from the analysis of Walleye because commercial 
fishing did not occur owing to a fishery closure resultant of mercury contamination (GLFC, 2022). See Table S1 for more details 
about these models. 
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Figure S10. Generalized additive modeling splines with 95% confidence intervals between Lake Whitefish (left), Walleye (middle), 
and Yellow Perch (right) commercial harvest and the 5-year moving averages of modeled annual hypoxia extent (top panels) and 
modeled air temperature (bottom panels), 1932-2020. For each spline, variation due to the other predictor variable has been factored 
out. The years 1970-1972 were removed from the analysis of Walleye because commercial fishing did not occur owing to a fishery 
closure resultant of mercury contamination (GLFC, 2022). See Table S1 for more details about these models. 
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Figure S11. Generalized additive modeling splines with 95% confidence intervals between Lake Whitefish (left), Walleye (middle), 
and Yellow Perch (right) commercial harvest and the 5-year moving average of modeled annual hypoxia extent, 1952-2020. No other 
predictors were included in these models. The years 1970-1972 were removed from the analysis of Walleye because commercial 
fishing did not occur owing to a fishery closure resultant of mercury contamination (GLFC, 2022). See Table S1 for more details 
about these models. 
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Figure S12. Generalized additive modeling splines with 95% confidence intervals between Lake Whitefish (left), Walleye (middle), 
and Yellow Perch (right) commercial harvest and the 5-year moving averages of modeled annual hypoxia extent (top panels), modeled 
air temperature (middle panels), and Rainbow Smelt (bottom panels), 1952-2020. For each spline, variation due to the other predictors 
variable has been factored out. The years 1970-1972 were removed from the analysis of Walleye because commercial fishing did not 
occur owing to a fishery closure resultant of mercury contamination (GLFC, 2022). See Table S1 for more details about these models. 
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Figure S13. Generalized additive modeling splines with 95% confidence intervals between Lake Whitefish (left), Walleye (middle), 
and Yellow Perch (right) commercial harvest and the 5-year moving average of modeled annual hypoxia extent, 1984-2020. No other 
predictors were included in these models. The years 1970-1972 were removed from the analysis of Walleye because commercial 
fishing did not occur owing to a fishery closure resultant of mercury contamination (GLFC, 2022). See Table S1 for more details 
about these models. 
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Figure S14. Generalized additive modeling splines with 95% confidence intervals between Lake Whitefish commercial harvest and 
the 5-year moving averages of modeled annual hypoxia extent (top-left panel), modeled air temperature (bottom-left panel), Rainbow 
Smelt (top-right panel), and estimated Lake Erie Sea Lamprey population size, 1984-2020. For each spline, variation due to the other 
predictors variable has been factored out. See Table S1 for more details about these models. 

 



21 
 

 

Figure S15. Generalized additive modeling splines with 95% confidence intervals between Walleye commercial harvest and the 5-year 
moving averages of modeled annual hypoxia extent (top-left panel), modeled air temperature (bottom-left panel), and Rainbow Smelt 
(top-right panel), 1984-2020. For each spline, variation due to the other predictors variable has been factored out. The years 1970-
1972 were removed from the analysis of Walleye because commercial fishing did not occur owing to a fishery closure resultant of 
mercury contamination (GLFC, 2022). See Table S1 for more details about these models. 
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Figure S16. Generalized additive modeling splines with 95% confidence intervals between Yellow Perch commercial harvest and the 
5-year moving averages of modeled annual hypoxia extent (top-left panel), modeled air temperature (bottom-left panel), and Rainbow 
Smelt (top-right panel), 1984-2020. For each spline, variation due to the other predictors variable has been factored out. See Table S1 
for more details about these models. 
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8. Environmental data used in hypoxia model 
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9. Data used in and fisheries threshold analysis and generalized additive modeling 

Year 
Lake 

Whitefish 
Harvest 

(1000s of kg) 

Walleye Comm 
Harvest 

(1000s of kg) 

Yellow Perch  
Comm Harvest  
(1000s of kg) 

5-Yr Moving 
Ave. of 

Hypoxia Extent 
(1000s of km2) 

Rainbow 
Smelt 

Harvest 
(1000s of kg) 

5-year Ave. 
Annual 

Temperature 
(°C) 

5-yr Adult 
Sea 

Lamprey 
Population 

Size 
1928 1041 596 3903         
1929 1246 423 5322         
1930 1385 857 3520         
1931 1263 1199 6045         
1932 1104 918 6700 2.964       
1933 906 536 2796 3.152       
1934 900 610 9021 2.778       
1935 1160 809 6658 2.993       
1936 1553 1196 1499 3.052       
1937 1087 1388 1561 3.229       
1938 1015 1422 3530 3.565       
1939 2341 2163 1367 3.723       
1940 3066 1755 2278 3.486       
1941 3081 1319 2663 3.568       
1942 2361 1348 1326 4.064       
1943 1290 1462 891 3.789       
1944 970 1587 1615 3.822       
1945 1374 2413 1161 4.725       
1946 1448 2821 2315 5.279       
1947 2388 1775 1836 5.054       
1948 3497 1824 2077 5.330 0     
1949 3767 2410 2240 5.772 0     
1950 1589 2479 2141 5.177 0     
1951 1070 2578 2397 4.982 0     
1952 1476 2335 1789 5.389 375 10.4   
1953 1460 2795 3352 5.735 1030 10.7   
1954 500 2367 5708 5.902 1266 10.6   
1955 410 2628 3248 6.564 2040 10.8   
1956 524 2781 8450 6.644 3694 10.8   
1957 685 2284 9293 6.817 4475 10.7   
1958 297 1796 10193 6.857 4657 10.3   
1959 71 733 13134 6.862 6858 10.2   
1960 20 532 8185 6.546 11496 10.0   
1961 8 365 9516 6.768 12852 10.0   
1962 7 196 12886 6.732 19182 9.8   
1963 10 362 10789 6.885 10830 9.6   
1964 3 256 4477 7.212 13181 9.5   
1965 3 198 9870 7.494 11713 9.5   
1966 5 161 11231 7.795 15923 9.5   
1967 1 232 11545 8.149 12504 9.6   
1968 1 234 12777 8.627 12224 9.7   
1969 1 128 15044 8.927 15078 9.6   
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1970 0 11 10444 9.630 9404 9.4   
1971 1 14 7513 10.058 13132 9.4   
1972 1 23 7943 10.656 10521 9.3   
1973 2 29 9034 11.649 17062 9.5   
1974 1 106 6613 12.420 15806 9.6   
1975 1 57 4593 12.407 16934 9.9   
1976 1 115 2962 12.543 17229 9.9   
1977 3 240 5161 12.218 22997 9.9   
1978 2 267 5165 10.826 26630 9.5   
1979 1 542 6893 9.771 23860 9.4   
1980 2 806 7151 9.118 25109 9.3   
1981 11 953 4882 8.343 30326 9.4   
1982 12 917 4424 7.594 43566 9.5   
1983 13 1411 2735 7.511 29494 10.1   
1984 6 1865 4199 7.181 16485 10.5 11283 
1985 5 2469 4337 7.046 25478 10.7 12981 
1986 9 3054 4991 6.670 17463 10.7 12738 
1987 55 3077 5095 6.639 25561 11.0 14276 
1988 52 3437 6076 6.073 20404 10.7 14390 
1989 61 3120 6355 5.568 16156 10.4 13216 
1990 101 3008 4151 5.305 17835 10.6 9835 
1991 288 2788 2419 5.401 20221 10.9 8437 
1992 292 3086 2318 5.074 12711 10.7 6253 
1993 350 4613 1921 4.857 17505 10.7 3652 
1994 395 4218 1490 4.809 10593 10.8 3714 
1995 421 4504 1265 4.582 12121 10.6 3778 
1996 310 4961 1534 3.917 8745 10.1 4597 
1997 306 4853 2196 3.899 13062 10.1 4024 
1998 537 4687 2061 4.385 14190 10.5 6326 
1999 567 4149 1899 4.576 12521 10.8 7293 
2000 612 3195 1969 4.757 7162 10.8 11232 
2001 542 1720 2140 4.903 9345 11.1 10908 
2002 479 1782 2896 4.831 7480 11.2 10719 
2003 278 1787 2977 4.137 7395 10.6 8862 
2004 285 1279 3161 3.874 12967 10.3 8485 
2005 149 2904 3518 3.420 6881 10.4 8537 
2006 165 3617 4171 3.594 1847 10.5 10598 
2007 420 2623 3515 3.456 9884 10.5 14382 
2008 471 2258 2976 3.741 8219 10.6 13863 
2009 505 1596 3351 3.820 8068 10.6 19088 
2010 310 1485 3601 4.303 3255 10.6 19183 
2011 280 2004 3602 4.124 5910 10.4 20229 
2012 155 2291 3945 4.757 7452 10.7 19523 
2013 72 2065 3393 4.660 6935 10.8 22441 
2014 67 2209 3180 4.212 6051 10.5 19054 
2015 56 2213 2609 3.509 8333 10.2 18782 
2016 25 2271 2579 3.638 10739 10.5 15780 
2017 14 2671 2961 3.139 7898 10.3 19060 
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2018 24 3276 2759 2.802 2558 10.4 16410 
2019 52 3579 2008 2.983 1325 10.8 13794 
2020 87 4060 1231 3.542 5478 11.2 9667 

 


