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The return of harmful algal blooms to western Lake Erie has heightened the focus on managing 
nutrient loading from its watershed, and particularly the large, agricultural Maumee River Watershed 
(MRW). Increased dissolved reactive phosphorus (DRP) loads over the last twenty years are suspected 
to be a primary cause of the recurrence and severity of these blooms. The primary cause of increasing 
DRP is still unclear, and therefore management efforts to reverse this trend are difficult to develop. We 
used a refined model of the MRW to investigate changes in climate and land management between 1980 
and 2019 to identify key factors driving trends in DRP as well as discharge and other nutrient forms that 
impact algal biomass and toxicity. We found that the dominant drivers of discharge and nutrients varied: 
historical climate trends drove discharge and nitrogen concentrations, while historical management 
changes were more responsible for changing phosphorus concentrations. Among the land management 
changes examined, the rising adoption of minimal- and no-tillage strategies had the greatest impact on 
nutrient trends, leading to reductions in total phosphorus (TP), total nitrogen (TN), and nitrate (NO3), 
yet increases in DRP. We posit that a better understanding of the water quality impacts of past land 
management enables modelers and managers to more accurately predict the impacts of potential future 
management changes.

Keywords: Soil and Water Assessment Tool, nutrient loading, historical farm management, climate 
impacts

Introduction

In the 1960s and 1970s, Lake Erie suffered 
from significant algal blooms and hypoxia as 
a result of excess phosphorus (P) loading that 

impacted drinking water, limited recreational use, 
and threatened local fish and wildlife populations 
(Ohio EPA, 2010). As a result, the International 
Joint Commission (IJC) instituted a P loading limit 
of 11,000 metric tons per year under the Great 
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Lakes Water Quality Agreement (GLWQA, 1978). 
Subsequently, P controls that primarily focused on 
point source contributors were widely adopted, and 
by the 1980s nuisance and harmful algal blooms 
(HABs) and hypoxia were less prevalent.

However, HABs and hypoxia returned in the 
1990s with greater frequency, extent, and toxicity 
over the next two decades. This resurgence 
occurred despite meeting the lake-wide water 
quality target for P. This led to the establishment 
of new targets by the GLWQA in 2016 that called 
for greater reductions in P loads (GLWQA, 2016). 
An additional focus was placed on dissolved 
reactive P (DRP) from the Maumee River, which 
decreased between the 1970s and the 1990s and 
then increased two-fold (Johnson et al., 2014; 
Scavia et al., 2014; Smith et al., 2015; Stow et 
al., 2015). Streamflow and total P (TP) exhibited 
a similar, but less pronounced, “u-shape” (Stow 
et al., 2015), suggesting climate variations may 
be partially responsible. Land management also 
likely contributed to trends in nutrient loads. Jarvie 
et al. (2017) suggested that 35% of the increase 
in DRP load after 2002 was related to increased 
streamflow and the remaining 65% was attributed 
to greater DRP delivery from the land to the river. 
While it remains unclear why the DRP load to the 
river changed, a review of 25 possible causes of 
the resurgence of HABs in Lake Erie suggested 
changes in agricultural practices were responsible 
for a disproportionate amount of the increases 
(Smith et al., 2015). The primary focus of most 
HAB management has been on P loading as 
research suggests P loads drive the size of blooms 
(Stumpf et al., 2012), and yet nitrogen (N) controls 
the relative abundance of varying bloom species 
and toxicity levels (Jankowiak et al., 2019; Harke 
et al., 2016; Gobler et al., 2016; Newell et al., 
2019). This highlights the need for understanding 
driving forces behind both P and N, especially 
because patterns in N loading trends are the inverse 
of those for P (Stow et al., 2015).

Watershed models have been used to 
investigate the impacts of changes in climate and 
land management on discharge and nutrient (N and 
P) loads (Kalcic et al., 2016; Keitzer et al., 2016; 
Muenich et al., 2016; NRCS CEAP, 2016; Scavia et 
al., 2016a; Apostel et al., 2021). However, few have 
used these models to address long-term, historical 
impacts of management changes. Jarvie et al. (2017) 

assessed the relative roles of climate and delivery 
mechanisms on increased DRP loading through use 
of empirical models. To our knowledge, Daloğlu 
et al. (2012) is the only process-based watershed 
modeling study that attempted to reproduce 
historical trends in loads in the Maumee River. 
They simulated changes in agricultural practices 
and field conditions from the 1970s through the 
2000s but were constrained by limited access to 
changes in field-level management practices. In 
addition, neither Jarvie et al. (2017) nor Daloğlu et 
al. (2012) focused on both P and N.

This study aims to understand the influence 
of historical changes in agricultural management 
practices and climate on P and N loading from the 
Maumee River. The specific objectives are to:

1. Simulate long-term trends in discharge and 
nutrient export using historical climate and 
agricultural management data,

2. Assess the relative roles of climate and land 
management in driving those trends, and

3. Identify the relative impacts of individual 
management practices on discharge and 
nutrient export.

Methods

Study area

The Maumee River Watershed (MRW) is a 
largely agricultural landscape located primarily 
in northwest Ohio, with boundaries that cross into 
Indiana and Michigan (Figure 1). Greater than 70% 
of the roughly 8,000 mi2 basin is row cropland 
(primary crops of corn, soybean and wheat). This 
region is characterized by flat topography with an 
abundance of poorly drained soils that have been 
drained through surface ditches and subsurface 
(“tile”) drains. The outlet of the Maumee River 
drains directly into the western basin of Lake 
Erie near Toledo, Ohio. While the Detroit River 
dominates the discharge into Lake Erie, the 
waters of the Maumee River have much higher 
P concentrations (Maccoux et al., 2016) and this 
riverine P load has been shown to drive the extent 
of annual algal blooms (Scavia et al., 2016b).
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Watershed model

The Soil and Water Assessment Tool (SWAT) 
is a watershed-scale model created to assess the 
impacts of land management on water quality in 
large, un-gauged basins (Arnold et al., 2012). 
It is a semi-distributed, physically-based model 
commonly used in agricultural settings as it 
permits implementation of detailed field conditions 
and management schedules. It has also been used 
extensively to predict water quality under climate 
change (e.g. Kujawa et al., 2020; Yuan et al., 2020).

In this study, we altered an existing SWAT2012 
model of the MRW to test our three objectives 
(Figure 2). The existing model was developed by 
Apostel et al. (2021) using management practices 
for 2005-2015, a calibration period that coincides 
with the latter portion of this study period. This 
model’s Hydrological Response Units (HRUs) 
approximate the resolution and location of 

individual farm fields. Apostel et al. (2021) used 
discharge, TP, DRP, total nitrogen (TN), and 
suspended sediment in a manual calibration (2005-
2015) and validation (2000-2004) process at both 
daily and monthly timescales near the watershed 
outlet at Waterville. While they did not originally 
calibrate for nitrate (NO3), back-validation reported 
‘good’ performance (Apostel et al., 2021) (Table S1 
available on-line through the publisher’s website). 
Calibration and validation goodness-of-fit statistics 
included the coefficient of determination (R2), 
Nash-Sutcliffe Efficiency (NSE), and percent bias 
(PBIAS) following ‘good’ model performance 
recommendations (Moriasi et al., 2015). In the 
MRW, point sources are responsible for a small 
fraction of nutrient load. Because we lacked point 
source data for the majority of the historical period, 
we removed point sources from the model so all 
changes in nutrient loading are associated strictly 
with changing land management practices.

Figure 1. Map of Maumee River Watershed (MRW) within the Laurentian Great Lakes Region. USGS gauge #04193500, Maumee 
at Waterville, is used for calibration and historical trend analysis.



Apostel et al. / Aquatic Ecosystem Health and Management 28 (2025) 95–11198

Climate data

To capture historical changes in climate, we 
obtained daily precipitation and temperature data 
from the National Climatic Data Center’s Global 
Historical Climatology Network (GHCND) 
(Menne et al., 2012). We eliminated climate 

stations missing >20% of daily precipitation or 
temperature data from 1980-2019, resulting in 24 
stations within or adjacent to the watershed (Figure 
1). We used a Haversine distance calculation, 
which accounts for earth surface curvature, to gap 
fill missing data from stations based on the next 
closest station with available data on that day.

Figure 2. Methodology diagram depicting the combinations of climate and management data used for each objective.



Apostel et al. / Aquatic Ecosystem Health and Management 28 (2025) 95–111 99

Fi
gu

re
 3

. L
on

g-
te

rm
 tr

en
ds

 fo
r o

bs
er

ve
d 

an
d 

SW
AT

-s
im

ul
at

ed
 (H

IS
TM

) M
au

m
ee

 R
iv

er
 d

is
ch

ar
ge

 a
nd

 n
ut

rie
nt

 o
ut

pu
ts

 (1
98

0-
20

19
) a

t t
he

 w
at

er
sh

ed
 o

ut
le

t. 
Ve

rti
ca

l d
ot

te
d 

lin
es

 re
pr

es
en

t t
he

 
br

ea
kp

oi
nt

 fo
r t

he
 o

bs
er

ve
d 

(b
la

ck
) a

nd
 si

m
ul

at
ed

 (g
re

en
) t

re
nd

s. 
G

oo
dn

es
s-

of
-f

it 
m

ea
su

re
s (

R
2,

 N
SE

, a
nd

 P
B

IA
S)

 a
re

 sh
ow

n 
on

 e
ac

h 
pa

ne
l. 

B
ol

de
d 

go
od

ne
ss

 o
f f

it 
m

ea
su

re
s m

ee
t m

in
im

um
 

sa
tis

fa
ct

or
y 

cr
ite

ria
 a

cc
or

di
ng

 to
 M

or
ia

si
 e

t a
l. 

(2
01

5)
 st

an
da

rd
s.



Apostel et al. / Aquatic Ecosystem Health and Management 28 (2025) 95–111100

Land management

To assess changes in land management 
practices, we collected historical (1980-2019) land 
management data on tillage management (Smith et 
al., 2015; Jarvie et al., 2017), crops (NASS CDL, 
2016), inorganic fertilizer application rates (IPNI, 
2011), and intensity of tile drainage (Jarvie et al., 
2017; NRCS CEAP, 2016; Kumar et al., 2009). We 
used best available data from current and historical 
surveys, fertilizer sales, and agricultural inventories 
as described below.

We altered the Apostel et al. (2021) model 
to represent management changes in the 1980-
2019 period that have been deemed influential in 
the region and for which data exists that can be 
implemented in the model. We hereafter refer to 
this as the historical management model (HISTM). 
We will also refer to management practices as the 
four practices which were modified in the model 
according to available historical data. Scenarios 
will refer to any model runs with changes made to 
the HISTM model. Because many of the relevant 
parameters that change over time are static inputs 
within SWAT2012, meaning they cannot be varied 
over time within a model run, we implemented 
a piecewise approach with HISTM using eight 
consecutive five-year model runs following 
5-year warmup periods. We ran each segment 
independently holding all other conditions constant 
between runs. To maintain consistency, we used this 
approach for all scenarios regardless of whether a 

scenario required a change in parameters. The 
following describes the data implemented into 
HISTM to modify it from the original Apostel et 
al. (2021) model.

Tillage management

For tillage management changes over time, we 
separated tillage into three categories: continuous 
tillage, rotational tillage (only before corn), and 
no tillage. Apostel et al. (2021) used NRCS CEAP 
reports to establish 2005-2015 distributions of 
practices. For the historical period (1980-2019), we 
relied on residue management data obtained from 
the National Resource Inventory surveys for Ohio, 
Indiana, and Michigan every 5 years beginning in 
1982 (Jarvie et al., 2017), and percentage of fields 
under each category changed at each 5-year time 
interval (Figure 2; Figure S5, Table S6-available 
on-line through the publisher’s website).

Cropping systems

We obtained general trends for the relative 
amounts of corn, soybean, and wheat planted in 
Ohio, Indiana, and Michigan from USDA-NASS 
for 1980 through 2019 (NASS CDL, 2016). To 
maintain model continuity, we made the following 
assumptions based on the data: 1) the total row crop 
area remained constant, and 2) there was no change 
in crops or crop variety, but only changes in relative 
abundance. We based both assumptions on survey 

Figure 4. Contribution to trend variance. Percent variation explained by climate and land management using a two-way ANOVA for 
rank normalized transformed discharge, load, and concentrations. All results reported significant values (p < 0.05).
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data which showed that that the total area planted 
for all row crops remained constant, but the relative 
abundance of the three crops changed (NASS CDL, 
2016). We then used tri-state historical crop data to 
determine a percent change in planted area for each 
crop in each state. These values we then scaled 
based on the relative area of each state within the 
watershed and then calculated percent changes of 
corn, soybean, and wheat of each 5-year historical 
period from the 2005-2015 period in the original 
model. With these percent changes, we adjusted the 
relative abundances of rotations to meet changes 
in individual crops on a 5-year basis (Figure 2; 
Figure S3-available on-line through the publisher’s 
website).

Inorganic fertilizer application rates

For the historical period, we used a watershed-
wide change in application rates from the 1985-
2019 average based on data from the International 
Plant Nutrition Institute (IPNI, 2011). Within 
each 5-year period, we determined an average 
application rate and then calculated the percent 
changes from the 2005-2015 calibration period. 
No data was available for 1980-1984, and so we 
used a linear regression on 1985-2019 data to fill in 
the missing data. Apostel et al. (2021) based their 
original fertilizer rates on county-level fertilizer 
sales which were then scaled to meet crop needs. 
We utilized this same approach (Figure 2; Figure S4 
available on-line through the publisher’s website).

Tile drainage

Approximately 70-78% of the western 
Lake Erie basin cropland was estimated to 
have subsurface drainage (NRCS CEAP, 2016); 
however, detailed information on the extent and 
intensity of tile drainage was limited. Kumar et al. 
(2009) suggested that while the total area under 
tile drainage may have changed little over the 
past 40 years, the density, or “intensity,” of tile 
drainage increased. We assumed a steady increase 
in tile intensity between 1980 and 2019 (Figure S7-
available on-line through the publisher’s website). 
The Apostel et al. (2021) model contained tile 
drainage on 71.5% of agricultural row crops, with 
41% of that area having a higher density of tile 
drains. We implemented historical intensification of 

drainage into the model by decreasing tile spacing 
(SDRAIN) and increasing the drainage coefficient 
in the model (DRAIN_CO) (Figure 2; Figure S8-
available on-line through the publisher’s website).

Long-term trend decomposition

We obtained daily monitoring data for 1980-
2019 from the National Center for Water Quality 
Research (https://ncwqr.org/) for the Maumee 
River at Waterville OH (USGS gauge number 
04193500). Using this data, we calculated nutrient 
loads from discharge and nutrient concentrations. 
Daily discharge and load values were summed to 
aggregate the data to a monthly timestep; monthly 
loads were then divided by monthly discharges to 
obtain a monthly concentration. We used a best 
fit linear regression model between discharge and 
loads at this location as presented in Obenour et al. 
(2014) to gap fill missing data.

We used a seasonal trend decomposition using 
LOESS (locally estimated scatterplot smoothing) 
to display trends, as presented in Stow et al (2015). 
Similar to Stow et al. (2015), we used the window 
lengths of 48 and 250 months for seasonal and 
long-term trends, respectively, but our time frame 
was adjusted to incorporate six additional years 
of data and to remove the late-1970s period that 
contained several years of missing discharge data.

Historical trends simulation

For Objective 1, to simulate long-term trends 
in discharge and nutrient export using historical 
climate and agricultural management data, we 
developed the final historical model, HISTM, 
using the Apostel et al. (2021) baseline model 
and incorporating the 1980-2019 climate and 
management data described in the sections above 
(Figure 2). We compared long-term data trends 
from HISTM with observed trends for discharge, 
nutrient loads, and nutrient concentrations. Both 
loads and concentrations were included as each 
has been shown to influence HABs (Gobler et al., 
2016; Harke et al., 2016). We assessed the model’s 
ability to replicate the observed trends using 
standard model performance statistics including 
the coefficient of determination (R2), Nash-
Sutcliffe efficiency coefficient (NSE), and percent 
bias (PBIAS). To further examine model trend 
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performance, we conducted a piecewise regression 
analysis in the software program R (R Core Team, 
2020) with the package segmented (Muggeo, 2008) 
and a single breakpoint. This analysis resulted in 
two separate periods of interest around a breakpoint 
for which we fit linear pre- and post-breakpoint 
regression lines. We compared long-term trends 
based on breakpoints and slopes of trends in loads 
and concentrations. We considered breakpoints 
estimated within a 48-month range similar due to 
the window length used in trend decomposition. 
We used a two sample T-test to compare pre- and 
post-breakpoint slopes.

Climate vs. management assessment

For Objective 2, to assess the relative roles 
of climate and land management in driving long-
term trends, we developed 64 scenarios of all 
permutations of climate and land management in 
the historical period: eight 5-year climate segments 
multiplied by eight 5-year management segments 
(Figure 2). We quantified the relative impacts of 
climate and management as the variance explained 
by each using a two-way main effects ANOVA 
on annual mean outputs for each permutation. 
Because the SWAT model is deterministic—only 
one realization is output for each permutation—the 
ANOVA considers only one case per treatment; 
consequently, we did not include an interaction 
term.

To evaluate if the results meet the necessary 
conditions for ANOVA, we performed a Shapiro-
Wilks test to determine normality and the 
score for non-constant error variance to test 
heteroscedasticity of residuals (Sharpiro and Wilk, 
1965). We transformed discharge, TP, and DRP 
data to meet the normality requirements using 
rank normalization (Shapiro-Wilk test, p < 0.05). 
We compared the ANOVA with transformed 
data to non-transformed data and found that the 
transformation had little to no impact on results.

Land management impacts

For Objective 3, to identify the relative impacts 
of individual management practices on discharge 
and nutrient export, we designed sensitivity 
scenarios for one-at-a-time changes such that each 
aspect of land management was held constant 

at the calibration levels (2005-2015) in HISTM 
(Figure 2). We determined changes in discharge 
and nutrient loads and concentrations for the period 
prior to the simulated breakpoint in the HISTM 
model by comparing mean values from HISTM 
to the individual management scenario runs and 
reported these as a percent change. To determine 
the significance of variation in the means, we used 
a two-sample t-test on the pre-breakpoint period for 
HISTM and management practice scenario.

Results

Historical trends simulation

We built a model capable of testing the role of 
historical land management and climate on water 
quality trends in the MRW. We estimated historical 
changes in agricultural management that scientists 
have suggested were responsible for shifting 
nutrient loads as they had an ability to impact 
nutrient export and experienced considerable 
changes in the historical period. In comparing the 
model output from the historical (HISTM) scenario 
to observed trends, we can assess the extent to 
which the model was able to capture observed 
trends through the combination of climate and 
land management changes. This tells us whether 
the proposed factors were likely to be the primary 
drivers of historical nutrient load changes. It also 
confirms whether the model replication of historical 
trends is sufficient for use in Objectives 2 and 3.

Simulated trends in discharge and nutrient loads 
and concentrations are similar to the observed as 
shown in Figure 3. On visual inspection, it is evident 
that the general shapes of the simulated trend curves 
are not dissimilar to the observed for discharge and 
P. There is however a divergence in trend in the 
2010-2019 period for TP and DRP components 
where the observed demonstrates a flattening curve 
and the modeled a decline (Figure 3). While N 
concentrations showed visually similar patterns, 
N loads were less successful at replicating long-
term trends. The Moriasi et al. (2015) performance 
criteria confirm these findings: by R2 we see 
strong correlation between observed and simulated 
discharge, P loads, and TP and N concentrations; 
the more stringent NSE shows that simulated DRP 
loads reasonably capture observed trends; PBIAS 
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indicates the magnitudes of simulated trends are 
within 25% of the observed for discharge and all 
nutrient concentrations and loads.

The location of breakpoints in observed and 
simulated trends further confirmed that the model 
exhibited an inflection in discharge and nutrient 
export towards the middle of the historical period 
(Table S9-available on-line through the publisher’s 
website). Such behavior not only supported the 
shape of the trends, but also the method used 
in Objective 3 to use simulated breakpoints for 
assessing watershed sensitivity to historical trends 
in practices one-at-a-time through scenarios. 
Breakpoints were most accurately identified for 
TP and DRP loads, as inaccuracies in simulation 
of discharge and P concentration breakpoints 
balanced one another out.

The discharge and nutrient export trends before 
and after our breakpoints were also indicators of 
how well the HISTM model replicated observed 
historical trends. Most model outputs produced 
statistically similar slopes to the observed 
trendlines, highlighting the model’s ability to 
capture the direction and steepness in trend (Table 
S9-available on-line through the publisher’s 
website). The exceptions were the statistically 
significant differences in pre- and post-breakpoint 
slopes for discharge and TN and NO3 loads (p < 
0.05), a pre-breakpoint slope mismatch in TN 
load and a slope direction mismatch in NO3 load 
simulations

For the most part, long-term simulated trends 
produced by HISTM largely resembled observed 
hydrology and water quality trends in the Maumee 
River visually and according to Moriasi et al. 
(2015) performance criteria (Figure 3). While 
in many cases the simulated magnitudes and 
breakpoints of discharge and nutrients disagreed 
with the observed data, we were most interested in 
capturing the overall patterns in trends to determine 
whether the model could be used to test Objectives 
2 and 3, and this indeed was the case.

Climate vs. land management

From the two-way ANOVA on the 64 
permutations of climate and land management 
changes we found that change in climate over 
time was responsible for 95% of the variability 
in discharge, while water quality had a mixed 

response to historical climate and land management 
changes (Figure 4). Land management played a 
greater role than climate in explaining TP and DRP 
concentrations and TP load variance, as well as 
NO3

 load. DRP and TN loads, as well as TN and 
NO3 concentrations, were more strongly influenced 
by climate (Figure 4).

Land management practices

The sensitivity analysis in which scenarios were 
run where individual land management practices 
were held constant one at a time at 2005-2015 
rates supported the finding that long-term trends 
in discharge were primarily driven by climate, 
as there was little variation among scenarios 
(Table 1, Figure S14-available on-line through 
the publisher’s website). For instance, the greatest 
impact on discharge was from the TILE scenario, 
and it was only a minimal (2%) increase due to 
tile drainage intensity held at the relatively higher 
2005-2015 value.

In contrast, scenario results showed that 
individual management practices greatly influenced 
nutrient concentrations and load patterns (Table 1). 
The movement from continuous tillage towards 
rotational tillage (2005-2019 tillage management 
in the TILL scenario) resulted in considerable 
shifts in P loading, increasing DRP (16 %) while 
simultaneously decreasing TP (-22%), such that 
DRP assumed a much larger proportion of the P 
load. The impact of fertilizer trends was clear and 
intuitive, with an increase in N and decrease in P 
fertilizer (2005-2019 rates in the FERT scenario) 
resulting in greater TN and NO3 loads (7% and 
9%, respectively) and concentrations (6% and 7%, 
respectively) and lesser TP and DRP loads (-8% 
and -14%, respectively) and concentrations (-8% 
and -14%, respectively). Reducing the abundance 
of wheat and soybean, while increasing that of 
corn, in the CROP scenario resulted in decreased 
fluxes of P (Load, TP: -5%; Load DRP: -3%; 
Concentration TP: -4%; Concentration DRP: -2%) 
and increased N (Load, TN: 10%; Load NO3: 
12%; Concentration TN: 4%; Concentration NO3: 
6%). A greater intensity of tile drainage (TILE) 
resulted in decreased P, with TP and DRP loads 
and concentrations decreasing between 3% and 
5% in the pre-breakpoint period. More intense 
tile drainage had smaller impacts on N, with TN 
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and NO3 loads increasing by no more than 3% and 
concentrations decreasing by 1%.

Comparing the relative impacts of management 
scenarios on individual outputs, each of the four 
trends in farm management practices served as 
a dominant driver of at least one water quality 
output (Table 1). The trend in tillage (TILL) was 
particularly impactful, driving changes in TP, 
DRP and TN loads and concentrations. Trends in 
fertilization (FERT) had the greatest impact on NO3 
concentrations. Shifts in crop abundance (CROP) 
had the largest impact on NO3  loads. More detail 
on individual impacts of individual management 
scenarios and resulting curve patterns can be found 
in SI section 5.

Discussion

Simulating observed trends

The goal of this study is to understand the 
drivers of long-term trends in nutrient loads and 
concentrations in the Maumee River draining to 
Lake Erie. While the focus of policy in the MRW 
has been primarily on reductions in P loads, flow 
weighted mean concentrations are considered an 
additional metric to assess P reduction progress in 
the region as this limits the impacts of inter-annual 
climate variability on nutrient contribution patterns 
(GLWQA, 2015). Therefore, concentrations may 
be more indicative of impacts of land management 
changes. Driven by estimates of observed climate 
and land management changes, the HISTM model 
was able to reasonably replicate long-term loading 
and concentration trends. This replication was 
of the general shape of the trends, as well as the 
magnitude of discharge and nutrient export over 
time. This suggests the factors included by the 
model that change over time--climate and land 
management—were able to explain much of the 
observed trends, giving us confidence that we can 
learn more from this model about the drivers of 
these trends.

While the model explained much of the observed 
trends, it did not capture trends fully. We would 
not expect a perfect match between simulated and 
observed historical trends for several reasons. First, 
the original model was calibrated to discharge and 
nutrient loads but not concentrations, and therefore 

would not be expected to perform as highly for 
concentrations. Second, the model was calibrated 
during the latter part of the historical period, and 
as expected, was better able to match observations 
closer to the calibration period than in the earlier 
period. Model parameters were established in this 
later period and hydrological system changes, 
which are represented by static model parameters, 
may not be adequately representing earlier realities. 
For example, the soil partitioning coefficient 
(PHOSKD) parameter is static in the model, and yet 
there is evidence that changes in soil P availability 
and transport from a variety of changes including 
the increase of soil pH over time (Smith et al., 
2015). While our piecewise modeling approach 
allowed us to modify static parameters over time, 
we set PHOSKD based on data from more recent 
edge-of-field monitoring, and lacked an estimate of 
how the parameter may have changed throughout 
the historical period. Third, model inputs are less 
certain in the early period. For example, point 
sources likely had larger contributions in the 
past—due to reductions through permitting taking 
a number of years to implement after the initial 
Great Lake Water Quality Agreement (GLWQA, 
1978; Scavia et al., 2014)-but were not included 
because of limited data, an assumption that they 
constituted a small fraction of nutrient load, and 
our focus being on non-point sources. Due to the 
steady nature of point source pollution due to 
permitting, the inclusion of these would likely only 
have resulted in magnitude shift, not a significant 
change in the shape of long-term trends. Given 
that a perfect match is unlikely, and the evidence 
that the simulated long-term trends are similar to 
the observed, we conclude that this model can be 
used to gain knowledge of nutrient loading impacts 
of climate and specific management changes in 
Objectives 2 and 3.

Roles of climate and land management

Understanding the extent to which nutrient 
loads is driven by changing land management vs. 
climate is critical for managing expectations of how 
the watershed will respond to future management 
strategies. While climate is known to play a key 
role in driving discharge and loading in general, it 
has been shown to have only a partial role in the 
MRW (Stow et al., 2015; Jarvie et al., 2017; Dodd 
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and Sharpley, 2016; King et al., 2018). Our results 
demonstrate that climate has been a significant 
driver of long-term trends in discharge and water 
quality, contributing between 5% and 67% of the 
variation in trends across all nutrient loads and 
concentrations. These results are consistent with 
studies that evaluated the impact of climate on P 
loads (Jarvie et al., 2017; Daloğlu et al., 2012) and N 
loads (Choquette et al., 2019). We found 53% (11%) 
of the variability in DRP loadings (concentration) 
were driven by climate, whereas Jarvie et al. (2017) 
reported that 35% of the change in load delivery was 
due to greater discharge volumes, which represented 
their climate mechanism. Therefore, our study 
suggests a greater role of climate in driving DRP 
export than previously thought. Continued climate 
changes, with projected increases in precipitation 
and a greater likelihood of intense storms (Angel 
et al., 2018; Williams et al., 2020), will need to be 
considered when developing future management 
strategies.

And yet, the finding that trends in climate 
did not always dominate the watershed’s water 
quality response in a changing management regime 
provides an optimistic message: that decisions 
farmers make in managing their lands are impactful 
and can improve water quality substantially. While 
climate has a strong role in transport, management 
decisions at the field level impact P type (fertilizer 
type), location (placement), and transport pathways 
(tile drainage, overland flow), which plays a 
substantial role in controlling the amount of nutrient 
available to be transported into a waterway (King et 
al., 2018; Pease et al., 2017). We see this impact in 
this study by the influence of management practice 
scenarios as drivers of TP and DRP concentrations.

N trends at locations within the MRW have 
been reported (Stow et al., 2015; Choquette et al., 
2019); however, ours is the first to simultaneously 
model climate and land management drivers of 
these trends. Consistent with trends discussed by 
Stow et al. (2015) and Choquette et al. (2019), 
TN and NO3 load and concentration trends are 
inversely related to discharge trends. TN load 
and concentration were primarily climate-driven 
(67% and 62% respectively). For NO3, load was 
more strongly controlled by land management 
and concentration by climate. The dominant 
impact of climate on concentration are counter 
to the expected management drivers, however, 

these trends suggest a potential dilution effect 
for TN, a result of limited changes in transport/
delivery capacity through limited changes in N 
focused management combined with increased 
discharge over time (Choquette et al., 2019). For 
NO3, the increased management control of this 
bioavailable form suggests it is more sensitive to 
changes in fertilizer application (Renwick et al., 
2018; Hubbard et al., 2013). Due to the impact of 
N on bloom toxicity in the Western Lake Erie basin 
(Jankowiak et al., 2019; Newell et al., 2019), being 
able to manage a large portion of the bioavailable 
NO3 is a promising message under current future 
climate change projections.

These results highlight the relative importance 
of historical changes in both land management and 
climate. While nutrients can be controlled through 
management practices, high discharges are likely 
to lead to larger loads regardless (Rittenburg et al., 
2015). Managing these strongly climate-driven 
components is more difficult with the management 
options explored here because they showed little 
impact on discharge at the watershed outlet. 
For future management, it may be wise to also 
consider management controls capable of reducing 
discharge, such as drainage water management 
(Heathwaite and Dils, 2000).

Land management drivers of nutrient 
export trends

Even in cases where climate variability 
is a stronger driver of loading trends, having 
better information on the relative influence of 
land management options is important to guide 
policy and practices. The sensitivity analysis 
that isolated the effects of historical changes in 
individual management practice scenarios allowed 
us to identify which practices were likely most 
influential in driving long-term nutrient trends. 
Here we summarize the significance of each 
individual driver:

Tillage

Tillage represented our dominant management 
driver, an expected result based on the extent 
of adoption of minimal and no-tillage practices 
during our period of interest (Jarvie et al., 2017) 
combined with the known impacts of tillage on 
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nutrient transport pathways (Tiessen et al., 2010). 
Reductions in tillage are known to reduce sediment 
export from a field, which thereby reduces 
particulate-bound P—a major fraction of TP—
from entering waterways (Tiessen et al., 2010). 
However, reduced tillage is also known to increase 
DRP by means of greater stratification of P in 
surface soil layers (Dodd and Sharpley, 2016). This 
is precisely what we found, with reduced tillage 
yielding greater DRP losses despite reductions in 
TP. While Jarvie et al. (2017) showed a similarity 
in changing tillage practice trends with changes in 
DRP loading, this modeling work shows the direct 
impact of these tillage trends on regional water 
quality. Tillage management has also been shown 
to play a significant role in N soil cycling and 
transport. Increased denitrification in soils under 
conservation tillage practices has been shown to 
decrease NO3 concentrations (García et al., 2016) 
and may increase the rate of N volatilization from the 
soil (Renwick et al., 2018), which we saw through 
the impacts on TN loads and concentrations.

Drainage tiles

We expected tile drainage to have the most 
significant impact on discharge because tiles 
affect the hydrological structure of the system 
by creating direct conduits into local waterways 
(Heathwaite and Dils, 2000). When the more 
closely spaced tile drainage of the calibration 
period replaced the lower density of tiles in the 
early period, discharge increased as expected. This 
was also reflected in greater N loads, as more N 
is exported in tile drainage than in surface runoff 
(Williams et al., 2015). As N loads increased, 
concentrations remained steady. Concentrations of 
NO3 in runoff and drainage are strongly impacted 
by nitrification and plant up-take rates in the soil, 
which were held constant in our model, while most 
watershed loads occur through drainage systems in 
highly drained fields (Williams et al., 2015). DRP 
load and concentrations, however, decreased with 
more intense tile drainage. These findings were 
consistent with findings from King et al. (2014) 
and Williams et al. (2015), as DRP concentrations 
are typically greater in surface runoff compared to 
tile drainage (King et al., 2014). Therefore, as tile 
drainage increased, the overland flows carrying 
a higher concentration of DRP would decrease, 

resulting in an overall decrease in DRP at edge-of-
field and downstream.

Fertilizer

Fertilizer application rates were important 
drivers of nutrient load changes. While the shape 
of curves changed minimally, the magnitude of 
loads and concentrations did show decreases across 
the management scenarios. Rates of fertilizer 
application are a key determinant of the amount of 
fertilizer available for both plant consumption and 
offsite transport. Using the 2005-2015 application 
rate in the FERT scenario resulted in reduced P 
fertilizer and increased N fertilizer applications and 
corresponding decreases in P load and increases in 
N load in the early part of the 40-year simulation. 
While this scenario focused only on the impacts 
of fertilizer rates and not application method or 
timing, it highlights the importance of fertilizer 
rate applications in driving nutrient loads and 
concentrations.

Cropping systems

Setting the relative abundance of crops grown to 
that of the 2005-2015 period was the least impactful 
scenario for nutrients, despite its suspected 
importance in driving some of the changing trends 
in the region (Smith et al., 2015). The most evident 
impact of this change was increased N in the CROP 
scenario due to a larger abundance of N-fixing 
soybean. Relative row crop abundance may have 
less impact on nutrient pollution and management 
practices surrounding changing cropping systems 
(e.g. tillage management for different styles of crop 
rotations and watershed wide fertilizer application 
to meet crop needs) play a more substantial role.

Other than tillage, the P focus practices showed 
an inverse impact on P and N contributions. 
Increases in N in the Western Lake Erie Basin have 
been linked to a rise in toxicity in algal blooms 
in the region (Jankowiak et al., 2019; Newell et 
al., 2019). The ability to impact N components 
through management sends a promising message 
that under an uncertain climate, there is potential to 
manage this nutrient. However, efforts need to be 
made in management practices specifically design 
for N management, as current P focused practices 
have shown to result in increased N component 
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contributions, which may in turn lead to smaller, 
but likely more toxic blooms.

Overall, our findings show that each 
management change that occurred over time 
impacted nutrient export. The most pronounced 
impact was that of changing tillage practices on 
P loading. Of greatest significance may be the 
tradeoff among P forms corresponding to reduction 
of tillage in the watershed, which simultaneously 
drove the greatest reduction in TP and greatest 
increase in DRP export to waterways. No-tillage 
has been encouraged in the watershed for both soil 
health and water quality benefits, and we found 
these benefits in reduced sediment-bound P and N 
to be appreciable. And yet with growing awareness 
of the role of DRP in the eutrophication of Lake 
Erie, it is timely to consider ways to lessen the 
stratification of P at the surface layers of the soil 
that may be responsible for elevated losses of DRP 
in no-till agriculture.

Future work

Simulating long-term trends can provide key 
understanding for effective management. Such 
analyses also build confidence in using a model 
outside of the period for which it was developed (e.g. 
future climate change impact assessments), provide 
better understanding of dominant processes, and 
aid in identifying model uncertainties. This work 
identified two key drivers of model uncertainty: 
model stationarity and data availability.

Model rigidity is a key challenge in the 
SWAT2012 model. While SWAT is regarded 
as effective for modeling long-term impacts of 
agricultural management practices (Arabi et al., 
2008), it does not allow for dynamically changing all 
parameters affected by management practices such 
as biological mixing associated with reduced tillage 
and drainage coefficient and spacing. Because there 
was no option to change key parameters over time, 
we conducted piecewise analysis of consecutive 
5-year model runs. We suggest future work in 
developing the model so that it can handle these 
dynamic parameter changes over time as SWAT 
models are increasingly being used in longer-term 
scenario assessments, especially in future climates, 
where maintaining static management practices 
and system representation is unrealistic.

Data limitations are often a key challenge, 
especially for longer-term historical analyses. 
While our scenarios replicated some facets of the 
observed trends, we were unable to match the timing 
of the DRP trend changes as well as the 2010-2020 
curve for TP and DRP. Lack of robust information 
on historic management trends may preclude 
capturing those phase shifts. Our assumption of a 
linear change in tile intensity is an example of how 
required simplified management implementation 
could have smoothed a key transition and in turn 
may have resulted in smoothed modeled trends. 
The discrepancy between modeled and observed 
long term trends during the 2010-2020 period 
for phosphorus could represent a change in 
management practices in the region that was not 
included, such as animal numbers which have 
increased in the region since 2015 (Bahe et al., 
2022), or the impacts of legacy P in streams which 
is not well represented in the SWAT model (White 
et al., 2014). Future study in this area could include 
gathering more refined data on land management 
for analyzing the water quality impact of specific 
management actions over time and space.

Conclusions

Lake Erie’s Western Basin has garnered 
significant policy attention as the size and toxicity 
of algal blooms has grown despite the continued 
adoption of conservation and nutrient management 
practices. Using a hydrologic watershed-scale 
model of the Maumee River Watershed, we sought 
to replicate historical trends of nutrient export, 
understand the roles of agricultural management 
practices and climate in driving these trends, and 
specifically identify management practices of 
greatest influence. Key findings include:

• The SWAT model was able to replicate 
the general shape of historical trends 
in discharge and N and P loading and 
concentrations.

• Changes in climate over the 1980-2019 
period were the dominant driver of trends 
in discharge.

• Trends in TP and DRP concentrations, as 
well as TP load, were predominantly driven 
by changing land management, while DRP 
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loads were controlled by both climate and 
management.

• Trends in TN and NO3 concentrations 
and TN loads were primarily climate-
driven, while NO3 loads were primarily 
management-driven.

• Among the land management changes 
simulated, the rising adoption of minimal- 
and no-tillage had the greatest impact on 
nutrient trends, leading to reductions in TP, 
TN, and NO3, and increases in DRP.

• Historical changes in fertilizer application 
rates also drove nutrient trends, with positive 
relationships between nutrient application 
rates and resultant losses.

Our finding that management has had a 
substantial impact on nutrient trends highlights 
the importance of continued focus on land 
management strategies in the face of a changing 
climate. Differing patterns in N and P controlled 
by climate and land management highlight the 
need to examine both nutrients simultaneously 
when developing management plans, as both 
contribute to the eutrophication issues plaguing 
Lake Erie. We found certain management actions 
showed clear tradeoffs among nutrient forms, in 
particular the move away from continuous tillage 
driving increases in DRP despite overall decreases 
in TP and N. The use of models like this one to 
assess progress towards nutrient loading targets can 
help managers and policymakers anticipate water 
quality outcomes into the future and enable adaptive 
management to occur on shorter timescales than 
seen in Lake Erie’s past.

Supplementary material

Supplementary material is available for this 
manuscript online through the publisher’s website. 
The supplementary information contains detailed 
information on Apostel et al. (2021) MRW 
SWAT model development and set up including 
assumptions, model calibration and validation 
details, as well as detailed information regarding 
historical data collection and assumptions.
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